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Dirac—K&hler Equation
S. I. Kruglov?
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Tensor, matrix, and quaternion formulations of DiraaHi€r equation for massive and
massless fields are considered. The equation matrices obtained are simple linear com-
binations of matrix elements in the 16-dimensional space. The projection matrix-dyads
defining all the 16 independent equation solutions are found. A method of computing
the traces of 16-dimensional Petiau—Duffin—Kemmer matrix product is considered. We
show that the symmetry group of the Diracafér tensor fields for charged particles is
SQ4, 2). The conservation currents corresponding this symmetry are constructed. We
analyze transformations of the Lorentz group and quaternion fields. Supersymmetry of
the Dirac—Kahler fields with tensor and spinor parameters is investigated. We show the
possibility of constructing a gauge model of interacting Diraghl€r fields where the
gauge group is the noncompact group under consideration.

KEY WORDS: symmetry; quaternions; gauge models; noncompact groups; super-
symmetry.

1. INTRODUCTION

The important problems of particle physics are the confinement of quarks and
the chiral symmetry breaking (CSB) (Simonov, 2000). Both problems cannot be
solved within perturbative quantum chromodynamics (QCD).

One of the promising methods in the infrared limit of QCD is lattice QCD.
Lattice QCD takes into account both nonperturbative effects—CSB and the con-
finement of quarks, and provides computational hadronic characteristics with good
accuracy. A natural framework of the lattice fermion formulation and some ver-
sion of Kogut—Suskind fermions (Kogut and Susskind, 1975; Susskind, 1996) are
Dirac—Kahler fermions (Aratyn and Zimerman, 1986; Baeksl., 1982; Becher,
1981; Becher and Joos, 1982; Edwasdsal,, 1988; Joos and Schaefer, 1987;
Jourjine, 1987; Rabin, 1982). The interest in this theory is due to the possibility of
applying the Dirac—lahler equation for describing fermion fields with spjf2n
the lattice (Aratyn and Zimerman, 1986; Bareksl., 1982; Becher, 1981; Becher
and Joos, 1982; Edwarad al., 1988; Joos and Schaefer, 1987; Jourjine, 1987;
Rabin, 1982).
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Recently much attention has been paid to the study of the DiralaleKfield
in the framework of differential forms (Benn and Tucker, 1982, 1983a,b,c; Borstnik
and Nielsen, 1999; Bullinaria, 1983, 1985, 1986, 1987; Graf, 1978; Jourjine, 1987,
Kahler, 1962; Talebaoui, 1993, 1994)alér (1962) considered an equation for
inhomogeneous differential forms that is equivalent to introducing a set of anti-
symmetric tensor fields of arbitrary rank. Itimplies the simultaneous consideration
of fields with different spins.

Kahler (1962) showed that the Dirac equation for particles with sffrcan
be constructed from inhomogeneous differential forms. Now such fields are called
Dirac—Kahler fields. Using the language of differential forms, Diraahl€i’s
equation in four-dimensional space-time is given by

d-5+md=0 (1)

whered denotes the exterior derivativé,= —xdx turns n-forms into fi — 1)-
form; « is the Hodge operator which connectsraform to a (4— n)-form so that
*? = 1 andd? = §2 = 0. The Laplacian is given by

(d —8)? = —(dé + 8d) = 8,,0"
So, the operator(— 8) is the analog of the Dirac operatpgd,,. The inhomoge-

neous differential formb can be expanded as

1 1
© = 9(x) + @u () dX* + 200 () AX" A DX+ 100 (X)

1
><dx"/\dx”/\dxp+E(pwa(x)dx“Adx”Adx"/\dx" (2)

wheren is the exterior product. The forme includes scalap(x), vectorg,,(x),
and antisymmetric tensor fields, (X), ¢,.,(X), andg,.,- (X). The antisymmetric
tensors of the third and fourth rans,,(x) ande,,,. (x) define a pseudovector
and pseudoscalar, respectively:

~ 1 Voo ~ 1 vpo
%(X) = Qeﬂp Pvpo (x) P(x) = EGM ’ Puvpo (x) ()

wheree”*?? is an antisymmetric tensor Levy-Civita. In fact, the Diraakfer
equation (1) describes scalar, vector, pseudoscalar, and pseudovector fields. Some
authors (see e.g., Becher and Joos, 1982; Bullinaria, 1983, 1985, 1986, 1987)
showed that Eq. (1) is equivalent to four Dirac equations

Vud, +my®Px)=0 b=1,2,3,4 (4)

The mapping between Egs. (1) and (4) makes it possible to describe fermions
with spin 1/2 with the help of Eq. (1), i.e., boson fields. As we have already
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mentioned, this possibility is used in the lattice formulation of QCD and for de-
scribing fermions with spin-1/2.

It should be noted that lvanenko and Landau (1928) considered an equation
for the set of antisymmetric tensor fields which is equivalent to the Dirabid€™
equation (1). Similar equations were discussed by Ericsson (1948), Bruno (1948),
Borgardt (1953a,b, 1956, 1957), and Feschbach and Nickols (1958) long before
the appearance of reports ofKlér (1962), and later, of Durand (1975), Kruglov
(1978, 1979), Bogush and Kruglov (1978), Bogwthal. (1978), Pestov (1978),
Ivanenkoet al. (1985), Solodukhin (1992), Obukhov and Solodukhin (1993), and
Gitman and Shelepin (2001). The author (Kruglov, 1978, 1979) found the internal
symmetry group5Q4, 2) (or locally isomorphic grougW2, 2)) of the Dirac—
Kahler action and the corresponding conserving currents. The Lorentz covariance
of the Dirac—Kdhler equation are also shown. The transformations c5®é, 2)
group mix the fields with different spins and do not commute with the Lorentz
transformations. Later Bogust al. (1978), lvanenket al.(1985), and Bullinaria
(1983) also paid attention to this symmetry. The transformations of the Lorentz and
internal symmetry groups discussed do not commute each other. So, parameters
of the group are tensors but not scalars as in (the more common) gauge theories.
This kind of symmetry is also different from supersymmetry where group param-
eters are spinors. The difference is that in our case the algebra of generators of the
symmetry is closed without adding the generators of the Paérgraitip. However
the indefinite metric should be introduced here. The localization of parameters of
the internal symmetry group leads to the gauge fields and field interactions.

The paper is organized as follows. In Section 2 we investigate the tensor
and matrix formulations of the Dirac-dfiler equation for massive and massless
fields. The tensor and spinor representations of the Lorentz group are analyzed.
Allindependent solutions of equations are found in the form of matrix-dyads. Itis
shown in Section 3 that the internal symmetry group of the Diraty& tensor
fields is SQ4, 2). For the case of spinor fields we come to th@l) group of
symmetry. In Section 4 within the framework of the quaternion approach, the six-
parameter internal-symmetry subgroup and the Lorentz covariance of the Dirac—
Kahler equation are considered.

The quantization of Dirac—#tiler's fields is carried out in Section 5 by using
an indefinite metric. It is shown in Section 6 that in the field theory including
Dirac—Kahler fields it is possible to analyze supersymmetry groups with tensor and
spinor parameters without including coordinate transformations at the same time.
We show in Section 7 the possibility of constructing a gauge model of interacting
Dirac—Kahler fields where the gauge group is the noncompact g&fg, 2)
under consideration. Section 8 contains a conclusion. A method of computing the
traces of 16-dimensional Petiau—Duffin—-Kemmer matrix products is considered
in Appendix A. Appendix B is devoted to the Lorentz transformations and the
guaternion algebra.
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We use the system of units =c=1,«0 = €’/47 = 1/137,e > 0, and
Euclidean metrics, so that the squared four-vectef is: v2 + v = v2 — vj(v? =
VZ + V3 + V3, Vg = iVo).

2. TENSOR AND MATRIX FORMULATIONS

OF DIRAC—K AHLER EQUATION

It is easy to show that Dirac-ddiler equation (1) with definitions (2) and (3)
is equivalent to the following tensor equations:

Wy — 9 + M2 =0 8¢y — 0, + MG, =0 (5)
Oupu—¢ =0 9,0, —¢=0 (6)
Puv = 0Py — WPy — EuvapdaPp (7)
where
9~0;w = %Suuaﬁ(paﬁ (8)
is the dual tensors,..p is an antisymmetric tensor Levy-Civitajzzs = —i. It

should be noted that Eq. (7) is the most general representation for the antisymmetric
tensor of second rank in accordance with the Hodge theorem (Hodge, 1951)
(see also Cabibbo and Ferrari, 1962; Gamblin, 1968; Post, 1974).

If ¢, @, ¢., §u, andy,, are complex values, Egs. (5)—(7) describe the charged
vector fields. These equations are the tensor form of the Diralsldkéquation (1)
which was written in differential form (Khler, 1962).

Now we show that in matrix form, Eqgs. (5)—(7) can be represented as the
Dirac-like equation with (16< 16)-dimensional Dirac matrices. The projection
matrix-dyads defining all the 16 independent equation solutions will be constructed
(Bogush and Kruglov, 1978).

The matrix form facilitates the investigation of the general group of internal
symmetry. To obtain the matrix form for both the massive and massless cases,
generalized equations are introduced:

EMZM + mZ&O =0
0y w[;w] + 3;&”0 + mlwlx =0
81)'#/1 - 8;&‘#1} - eﬂv(){ﬁaﬂtl/;ﬁ + mZW[uv] =0
3;ﬂﬁu + m2¢0 =0
With my = mp = m, Yo = —¢, ¥, = M@, Vo] = Puvs Y = IMPy, Yo =
—1®, €uap = ieuvap(€1234 = 1), we arrive at the Dirac—#liler equations (5)—(7).

In the casem; = 0, m, # 0 (wherem; is the dimension parameter), Egs. (9) are
the generalized Maxwell equations in the dual-symmetric form (Zaitsev, 1969).

9)
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Let us introduce the 16-component wave function
W(x) = {¥a} A=0,u, [uv] i, 0 (10)

wherey; = 1/7“, Yy = Vo. It is convenient to introduce the matg-B (Bogush
and Moroz, 1968) with dimension 16 16; its elements consist of zeroes and only
one element is unity where ro and columnB cross. Thus the multiplication
and matrix elements of these matrices are

eMBeCP = eAPsgc  (6™P)cp = SacdeD (11)
where indice#A, B, C, D = 1, 2,..., 16. Using the elements of the entire algebra
¢~B Egs. (9) take the form

{av |:8u,,[/4v] _I_g[;w],u, +€v,0+80,u +8‘~}’6+86’ﬁ

1 - - o
+ Eeuva (Suy[pwl + glpw],u)] + |:m1(8“”‘ + &™) 4 my
AB
00, L [v] L] 0.0
x | e7" 4 Zgttvhivl 4 g% Wg(x) =0 (12)
2 AB

Let us introduce the projection matrices
P = gt 4 ghoft P=g004 }8[#11],[#\1] + 200 (13)
2

with the propertiesPﬁ =PP=0,P+P= l16; 16 IS the unit 16x 16 matrix
and

x o= 1 . .
Fv — 8;4,[//.1)] + 8[;“)],;4 + 81},0 + 80,u + 8\),0 + 80,0 + Ee/wpa) (S;L,[pw] 4 g[pw],;/.)
(14)
Then Eq. (12) takes the form of the relativistic wave equation

(T3, + M P + myP)W(x) = 0 (15)

which includes both the massive and massless cases. The @6natrixI', can
be represented in the form

ro=pg"+p0 g =p0+87 B =Y+ D

B = grli] 4 gl g %eww (610 1 glood ) (16)

ﬂgé) _ 817,6 + 86,\7 550) = %04 O

Matrices g, gD and B©, 8O realize 10-and 5-dimensional irreducible repre-
sentations of the Petiau—Duffin—Kemmer (Duffin, 1938; Kemmer, 1939; Petiau,
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1936) algebra
B OB OB + OB OBY = 8 B0+ B0 (AD)

andg(, p(-) are 16-dimensional reducible representations of the Petiau—-Duffin—
Kemmer algebra (Borgardt, 1953a,b, 1956, 1957). These matrices obey the Petiau—
Duffin—Kemmer algebra (17) and the matfixis a 16x 16 Dirac matrix with the
algebra

r,r,+r.r, =25, (18)
For the massive case whem = m, = m, Eq. (15) becomes
(Tvo, + mW(x) =0 19)

The 16-component wave equation in the form of the first-order equation (19)
was also studied by Durand (1975). Now we find all independent solutions of
Eq. (19) in the form of matrix-dyads. In the momentum space Eq. (19) becomes

wherep = I';, p,, and parameter = +1 corresponds to two values of the energy.
From the property of the Dirac matrices, Eq. (18), we find the minimal equation
for the operatorf:

(ip+m(ip-—m=0 (21)

According to the general method (Fedorov, 1959, 1979), the projection op-
erator extracting the states with definite energy (for particle or antiparticle) is
given by

m-—igp
M, = 22
o (22)

This operator has virtually the same form as in the Dirac theory of particles with
spin 1/2. This is because the algebra of the matrices (18) coincides with the
algebra of the Dirac matricgs,. However, here we have the wave functigiix)
which is transformed in the tensor representation of the Lorentz group. It is also
possible to use Eq. (19) to describe spinor particles. In this case the wave function
W (x) will be a spinor representation of the Lorentz group and Eq. (19) is the
direct sum of four Dirac equations (see (4)). This case is used for fermions on the
lattice (Aratyn and Zimerman, 1986; Banddsal,, 1982; Becher, 1981; Becher and
Joos, 1982; Edwardx al,, 1988; Joos and Schaefer, 1987; Jourjine, 1987; Rabin,
1982).

Now we consider the bosonic case. The generators of the Lorentz group
representation in the 16-dimensional space of the wave funcligrpare given
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by (see Borgardt, 1953a,b, 1956, 1957; Durand, 1975)
1 — — _ _
v = Z(Ouly = D0y + T,0y = TL) (23)

where the matrice¥, also obey the Dirac algebra (18) and have the form (see

(16))

r, = - g (24)
It may be verified that the matric&s, andI", commute each other, i.e.
[, T, =0 (25)

The spin projection operator here is given by
_ i i
7P~ " 2pp “ap|

which satisfies the following equation
op(op —Dop+1)=0 27)

In accordance with Fedorov (1959, 1979) the corresponding projection operators
are given by

€abcPaJbc = €apcPa(Tplc + 1:bl:c) (26)

Sun = }ap(ap +1) Sg=1-0 (28)

OperatorsS(il) correspond to the spin projectioss = +1 and S(o) tosp = 0.
It is easy to verify that the required commutation relations hsﬁgi) = S1),
SS90 =0, S(O) So)- The squared Pauli-Lubanski vectdt is given by

1 S|
02 = (%Slwaﬂ o Jaﬁ) = W (Jiv p2 - ‘Jua Jvo pu. pv) (29)
It may be verified that this operator obeys the minimal equation
0302 -2)=0 (30)

so that eigenvalues of the squared spin opergtares(s + 1) = 0 ands(s + 1) =
2. This confirms that the considered fields describe the superposition of two spins
s = 0 ands = 1. To separate these states we use the projection operators

2

02 o
H=1-5 =7 (31)

having the propertle§(o)§l) =0, (S(O))2 Soy (Sm)2 Sy and ) + Sy =
1, where 1= |4gis the unit matrix in 16-dimensional space. In accordance with the
general properties of the projection operators, the matﬁé,gand S(Zl) acting on

the wave function extract pure states with spin 0 and 1, respectively. Here there is
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a doubling of the spin states of fields because we have stglpseudoscalaf o,
vectory,,, and pseudovectay,,, fields. To separate these states it is necessary to
introduce additional projection operators. We use the following projection operator
- m-—igp
= 32
om (32)

which has the same structure as Eq. (22) but with the mqi_tﬁb(ﬂ p, and an
additional quantum number= +1. Following the procedure (Fedorov, 1959,
1979), 16 independent solutions in the form of projection matrix-dyads are given by

o2 m—iep m—iep 1 —
Agr15= = " om P om P. zap(ap 1) =W, 415 Va1
) o o
n 0% m—isgp m-—igp —
Ae(?,g - ? : om . om . (1 - GS) = \Ijs,s_' \Ijs,s_ (33)

2 . ~ . —_—
0 o m—lsp m—lsp 0 —(0
R P

where operatorA&ﬂ,gandAS% correspond to states with spin 1 and spin projec-

tions+1 and 0, respectively, and the projection operﬁt@extracts spin 0. The
wave function¥ (W, 11, 0r ¥, z or \Dﬁ?sl) is the eigenvector of the equations
—ipY, = em¥ —ip¥p = em¥
P p i P P (34)
opWp =sp¥p oV =s(s+1)¥,

where the spin projections asg = 1, 0 and the spin is = 1, 0. The Hermitian-
izing matrixn in 16-dimensional space is given by

n= T4l (35)
This matrix obeys the equations
i =-Tin (1=1,2,3) nla=Tuy

which guarantee the existence of a relativistically invariant bilinear form (Bogush
and Moroz, 1968; Fedorov, 1959)

WY = Uty (36)

Where\ip = lI/+F4IT4, andw™ is the Hermitian-conjugate wave function.
In the spinor case, when Eq. (12) is the direct sum of four Dirac equations,
generators of the Lorentz group in 16-dimensional space are

1
IE/ = J(CuTy = 1T (37)
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and the Hermitianizing matrix igy,» = I's. Using the unitary transformation we
can find the representatidrf, = 14 ® y,,, wherely is a 4x 4 unit matrix,y, are
the Dirac matrices, an@® means direct product. On this basis the matricgs
becomd“l; =y, ® la

It is convenient also to use equations

(Mm—iep)(m—iep) = 2ip™ (ip™ — em) (38)

[ ) al—
op = aéf) = —ﬁe abe paﬂb ,3(+) = = —Hfabcpalgé ) % (39)

where the sign-{) in Eg. (38) corresponds to the equality= ¢, and sign )
to e = —e. With the help of Egs. (38) and (39), the projection operators (33) are
rewritten as

2
o, .
Aer1i= wlp(i) (ip® —em)o (oD £1) = e et
2
1 o . . -

1 a2\ . , —
AQ = o <1 - 7) ip®(ip® —em)(1-0§9?) = w2 . 2

wherep®) = p, 8. Projection matrix-dyads (40) extract solutiot§” which
are the solutions of the equations

. 1
—ip W = S(e + emu) (41)
LipOwO) = 1 — Hmut) (42)
pr Wyt = Sle —ea)m¥y
oW =500 02w = s(s + )W (43)

For the bosonic case with= ¢, Eq. (41) describes the superposition of vector
and pseudoscalar fields, and Eq. (42) with —¢ describes the superposition of
pseudovector and scalar fields (see Borgardt, 1953a,b, 1956, 1957).

Let us investigate the case of massless fields; Eq. (15)mjita- 0 becomes

(Tyd, + MP)¥(x) =0 (44)
In the momentum space, the field functidq is the solution to the equation
BUy=0 B=ik+mP (45)
wherek =T, k,, kﬁ = 0, and the matriB obeys the minimal equation
B(B—my) =0 (46)
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The projection operator which extracts the solution to Eq. (45) is

m,— B
= — 47
¢ my ( )

with the equalitye® = « required by a projection operator. The corresponding
spin operators are given by

ok = —I—éabckaﬁéi)ﬁ((;i) (48)
ko
We have mentioned that the theory under consideration involves the doubling
of the spin states of particles, because there are vector and pseudovector fields.
To separate these states in the massless case we can use the following projection
operators

A= }(1 + 61:5)
2
wherel's = I'1I'>'3's ande = +1. The matrixA. commutes with the matril of
Eq. (45) and with spin operators (48), and possesses the required rélation . .
As aresult, the projection matrix-dyads, corresponding to the generalized Maxwell
field after extracting spin O and spin projectioh$, take the form

1 a? v

00— 2 (17 ) e oo — w0
moy 2

(49)

1 —
n&y = o k(O E M2 — B)A: = v e
2

Let us consider the case of spinor particles when the wave fundt{omn
realizes the spinor representation of the Lorentz group with the generators (37) and
Hermitianizing matrixy1/2 = 4. In this case the wave functiobi(x) represents
the direct sum of four bispinors and the variables ., Y., 1/7,“ and vo,
which comprise¥(x) (10), are connected with components of spinors. Under the
Lorentz transformations with generators (37) these variables do not transform as
tensors. Thus the equations for the eigenvalues and the spin operator are

i A (l/2) (1/2) (1/2)\,(1/2) _ (1/2)
—I p\I’p = 8m\pr oy LI/p = Sp\I’p
. (50)
0(1/2) = — €anbcPal'vl’c

P 4ip|

wheres, = +1/2. As there is a degeneracy of states due to the 16-dimensionality
we should use additional equations with the corresponding quantum numbers.
Taking into account Eq. (25) we can use the following additional equations to
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separate states of spinor fields:

oy (1/2 oy 1/2 1/2 1/2 = 1/2
_|p\pé/):8mq]§)/) 55/)‘1’%/)2%‘1’%/)
i (51)
0_’,(31/2) = ——¢€ancPal'blc

4|p|

with s, = £1/2. We can treat the additional quantum numgeas the “internal
spin” because matrices (24) obey the Dirac algebra

r,T, +T,T, =25, (52)

Thus it is easy to find all independent solutions of Egs. (50) and (51) in the form
of matrix-dyads:

m—iep m—iep [1 1
As's_'sprgp = m : om . (E + ZSpO'él/z)) (E + ZSp(;él/z))

=Viss  Yeiss, (53)

where, =55, = W o s T4, & = £1,5, = +1/2, and we introduce two addi-
tional internal quantum numbess= +1 ands, = +1/2. Durand (1975) also used

a similar construction for the solutions of the field equations but without the dyad
representation (53). The dyad representation is essential as all quantum electrody-
namic calculations can only be done using matrix-dyads (Fedorov, 1959, 1979).
The necessary method of computing the traces of 16-dimensional matrix products
is considered in Appendix A.

3. THE LORENTZ COVARIANCE AND SYMMETRY GROUP 0(4.2)
OF CHARGED VECTOR FIELDS

Let us consider the Lorentz group transformations of coordinates
X, = LuX, (54)
where the Lorentz matrik = {L ,,} obeys the equation
LysaLvee = 8 (55)

Under the Lorentz coordinates transformations (54), the wave function (10)
transforms as follows

V(X)) =TW¥(x) (56)

where 16x 16 matrixT realizes the tensor or spinor representations of the Lorentz
group. Then the wave equation of the first order (19) is converted into

(T3], + MW/'(X) = (T, L8, + MTW(X) = 0 (57)
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We took into account that at the Lorentz transformations (54) the derivatives
d, become), = L, d,. The Lorentz covariance of the Diracailer equation (57)
occurs if the equation

F//.T L;/.v = TFv (58)
is valid. The infinitesimal Lorentz transformations (54) are given by the matrix
L;Lv = axw + Euv Euy = —Eup (59)

where six parametees,, define three rotations and boosts. At the same time the
matrix T at the infinitesimal transformations (59) can be written as

1
T=li1s+ ESMU le (60)

wherels and J,,, are the unit matrix and generators of the Lorentz group in 16-
dimensional space, respectively. With the help of Egs. (59) and (60) and using
the smallness of parametess, we arrive from Eq. (58) at (see Ahieser and
Berestetskii, 1969)

F;LJotv - ‘]DZUF;L = 6aurv - SV}LF[X (61)

Itis easy to verify that generators (23) for bosonic fields and generations (37)
for fermionic fields obey Eq. (61). This means that Eqg. (19) is covariant 16-
dimensional Dirac-like wave equation, which can describe bosons as fermions.
For the bosonic case the wave functid{x) is given by Eq. (10) but for the
fermion case it is a direct sum of four bispinors (see Eq. (4)). At the finite Lorentz
transformations the wave function transforms according to Eq. (56) with the matrix

T = exp(%e,w J,w) (62)

We will show that the grouQ4, 2) is the symmetry group of the Dirac—
Kahler charged vector fields. This will be obtained using the Dirac matrix alge-
bra and the minimality of the electromagnetic interaction (Bogetsal., 1978;
Kruglov, 1979).

The interaction with electromagnetic field is introduced by the substitution
A — D,([) =9, —ieA,, whereA, is the vector potential of the electromagnetic
field. Consider the Lagrangian

g o) v oM 1
L= > () (D7 +m)¥(x) —¥(x)(I,D,” —m)|¥(x) _Z]-‘lw
(63)
where DY = 9, +ieA,, W = W*I4I,, and the arrows abovB(® show the

direction in which these operators agi;, = 9, A, — 9, A, is the strength tensor
of the electromagnetic field. From the variation of the Lagrangian (63) on wave
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functionsw and¥, we find equations for Dirac—#tiler vector fields in the external
electromagnetic fields

(DO +m)w(x)=0  W¥(x) (FMSL—*_) - m) =0 (64)

From the variation of Eq. (63) on the vector-potenttal we get Maxwell equa-
tions, in which the source is the electromagnetic curdéht= iew I, W.
Let us consider the set of 16 linear independent matrices:

I 16 I, = 1:/4 L = _F[Ml:v}

4
[ =T Malolals T, = Fel,

(65)

e_
They commute with the operators,(D(”) + m), (I', D$Y — m) of Egs. (64) and
generate the algebra of the symmetry of Eqs. (64). The algebra of the genera-
tors (65) is isomorphic to the Clifford algebra with the commutation relations

[laﬂ’ I/w] = Sﬁﬂlw + ‘Savlﬂu - 5/3v|¢m - (Saulﬁv
[I/u Iwﬁ] = 5ua|ﬂ - 8Mﬁ|a
[ lapl = 8ualp — 8upla (66)
Hh]=208, [ h]=4l,, [1.,1,]=-4,
o 1l=-20, [T,01==21, [l 1]1=0
Let us introduce the anti-Hermitian generators (Stepanovskii, 1966):
i~

lo=1l1s Isg = —lgs = = |

1 ? i (67)
low =—lue=5lu s =—lis =5l

With the help of Egs. (67), the commutation relations (66) take the form

[1aB, lcp] = éeclap +8aplec —Saclep — deplac

(68)
[lag, 0] =0 A,B,C,D=1,2,...,6

The algebra (68) corresponds with the direct product of the group of 6-
dimensional rotatior5Q(6) and the unitary group) (1) (for real group param-
eters). This group is isomorphic to th&4) group. The transformations of the
corresponding group are given by

v(X) =
(x) =UVv(x) ) ) (69)
U=expla+ 1,8+ o+ 1,8, +1§&)
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wherex, 8, w,., 8, and¢ are the group parameters; if these parameters are com-
plex, we have th&L(4, c) group. For the neutral Dirac-dler fields, the transfor-
mations (60) should leave real components as real components with the conditions
a* =a, By = Bm By = —Ba 0= Omn Oy = —Oma, Sy = —8m, 83 = 0a,
and&* = —¢ corresponding to th&Q(3, 3)® GL(1, R) group. Such a contrac-
tion of theGL(4, ¢) group is a consequence of charged fields being described by
complex fields having more degrees of freedom.

The requirement that the Lagrangian (63) is invariant under the transfor-
mations (69) leads to the constraints= —«, 8, = Bm, B5 = —Ba Wy = Omn,
W4 = —wma, 85y = 8m, 8; = —84, and&* = & which correspond to contraction
of the S|4, 2)® U (1) group with 16 parameters (Bogushal, 1978; Kruglov,
1979). This occurs only for charged Diracaldér fields. The subgroup(1) is the
known group of gauge transformatiods(x) = exp(l &)W (x)(«* = —«), which
gives the conservation law of four current. For neutral fields, the group leaving
the Lagrangian invariant under the transformatioB@&3, 2) with generatorfsﬂ
andl,, and corresponding parametess, = wmn, ®j, = —®ma4, 85, = —8m, and
8} = 84. The generators,, (see (66)) with parametets},, = womn andw};, =
—wmg correspond to the subgro(3, 1). The one-parameter subgroup of the
Larmor transformations with the generatovas mentioned in Borgardt (1953a,b,
1956, 1957). Only generators of Larmor and gauge transformations commute with
the Lorentz group generators (23). This means that in the general case, the trans-
formations of the group with internal symmet8(4, 2) do not commute with
the Lorentz transformations. The transformations of the Lorentz group realize
the operation of internal automorphism with respect to the elements of the group
considered. As a consequence, the parameters of this group are tensors. This is
the main difference between the group being considered and the usual groups of
internal symmetry where parameters are scalars.

As the Lagrangian (63) is invariant under t8€(4, 2) ® U (1) group we find
in accordance with Noether’s theorem that the variation of the action is

§S= / d*xd, (W (X)T . 8W(X) — ¥ (X)T, W(x)) = 0 (70)
As parameters of transformations (69) are independent we find from (70) the
conservation tensors:
J =1V W (X) K, =WE)T5%(X) R = WX, TsMW(X)
Cua = V(X)W ToW(X) Oupug) = W), T T gy W (X) (71)

These conservation currents were also constructed in Borgardt (1953a,b, 1956,
1957) without consideration of the corresponding internal symmetry. Conservation
of the currents (71) follows from the symmetry-gro8(4, 2)® U (1) of the
Lagrangian (63). For the neutral DiracaHllér fields, there is a conservation of ten-
sorsC,, and® g corresponding to the symmetry-subgrd&@3, 2). Using the
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matriced",,, I',, (16), and (24) and wave function (10Xx), ¥(x) = ¥ (X)[4l4,
it is easy to verify that in this case (of neutral fields), the currdpi,, andR
are identically zero.

For the spinor case with the generators (37), the Lagrangian (63) with the con-
jugate function¥(x) = Wt (x)I'4is invariant under th& (4)-group transformation
(69) with the parameter constrains = —a, B = — B, @}, = Wu, 8, = 8y,
and&* = —£. In this case the transformation (69) commutes with the Lorentz
transformations (see (37)). The existence of the additional quantum nusbers
ande is connected here with the presence of the gi®ugt). The subgroup)(1)
with the parametez is the well-known group of gauge transformations giving the
conservation of the electric curredf = i W (x)I", ¥ (X).

4. QUATERNION FORM OF DIRAC-K AHLER'S FIELDS
AND SYMMETRY

Dirac—Kahler equations (5)—(7) may be written in quaternion form (Kruglov
et al, 1978a; Kruglov and Strazhev, 1978). Within the framework of the quater-
nion approach, the six-parameter internal-symmetry subgroup of the DiadwbeK "
equation is considered. It is shown that the Lorentz group is the automorphism
group of the group under consideration. The possibility is investigated to reproduce
the potentials and field transformations induced by the coordinate transformation
in the complex space-time (Kruglat al., 1978b).

Let us introduce the following biquaternions (see Appendix B)

V=e,0, F=Fe G=G,e,

Fmn=Hmn—iEn F4=_(P_i¢ G;t=¢M+i¢[L (72)
1 .
Hm = EémnkV)nk Em=1¢ms

Using the algebra of quaternions (see Appendix B) we represent Egs. (5)—
(7) as

VF+m’G=0 F=-VG (73)

whereV = €,0,; e, = (es, —em) are the conjugated quaternion elements. The
Lagrangian (63) with the help of the basis elements of the quaternion algebra takes
the form

1_= e _
L=—5(FF+m°GG+ F'F +m'G"G) (74)

Equations (73) preserve their form under the following transformations of the
field variables:

G—-> G =GD F—>F =FD (75)
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In the general case, transformations (75) defineSh@, c) group as the
quaternion algebra isomorphic to the algebra of Pauli's matrices (see Appendix B).
The Lagrangian (74) is invariant under the transformations (75) if the biquaternion
D satisfies the equalitip D = 1. This condition defines a six-parameter group of
internal symmetn85Q(3, 1), which is a subgroup &Q4, 2) investigated in the
previous section. We can use the following parametrization of the biquatemion

D = expn (76)

wheren is the vector biquaternion with six parameters. The complex quaternion
(76) obeys the equatidd D = 1. The finite transformations (75) with the biquater-
nion D (76) define subgrougsU(1, 1) andSU?2) for the real and complex param-
etern;, respectively. It is easy to verify that transformations (75) correspond to
(69) ata = Bu =906, =& =0,0[m4) = —wpm = Imnp, andw[mn] = emnkReng.
_Under the transformations of the Lorentz group, the quaterr@orts Vv, and

V are changed as follows:

G =L*GL F'=LFL

_ L 77
vt =L*vL Vi=LvVL* (77

with the conditionLL = LL = 1. It is obvious that the field equations (73) are
invariant under the Lorentz transformations (77) which guarantee the relativistic
invariance. Now let us consider the transformations of the Lorentz groapd
D-transformations (75). We have

GPL = L*GDL G = L*GLD

_ _ (78)
FPL — LFDL F® = LFLD

It follows from Egs. (78) that the Lorentz group does not commute with
the group of the internal symmetry (75) @8% # G-P, FPL £ FLD, Under the
Lorentz group transformations, the biquaternidtransforms as

DL = LDL (79)

It is seen from Eq. (79) that parameters of the group (75) are transformed
under the tensor representation of the Lorentz group. Equation (79) also denotes
thatthe Lorentz group is the automorphism group of the group under consideration.

Let us consider the complex four-dimensional space where coordinates
are complex potentialsG, = ¢, +i¢,. The group of transformations of
four-dimensional rotations in this space is homomorphic to the g&fg, c); it
leaves the quadratic forr@i invariant. We suppose that the space-time coordi-
natesx, are not transformed here. The transformations of this group are given by
(Appendix B)

G —» G'=SGR (80)
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whereSS = RR = 1. Because coordinates are not changed under this transforma-
tion, the quaternion¥ andV are also not changed. Transformation (80) leaves
Egs. (73) invariant. Indeed,

F/ = —VSGR -
VF +m?G’ = V(- VSGR+ m?’SGR = §VF + m’G)R=0
This extracted three subgroui(2, ¢) from SQ4, c):
S=1 RR=1 G =GR F=FR (82)
R=1 SS=1 G =SG F=-VSG (83)
S=R* RR=1 G =R'GR F=-VRGR (84)

It is obvious that group (82) coincides with group (75).

Now we discuss the possibility of inducing the transformations (75) by the
Lorentz transformations in the complex space-time (see Appendix B). Transfor-
mations of the complex coordinatés= LzRof the complex Lorentz groupQ4,
¢) induce the following transformations of biquaternionsv, G, andF:

V =LVR V =RVL

_ (85)
G =LGR F = RFR
with the constraintiRR = 1 andLL = 1. At the transition to the complex space-
time, transformations of the complex Lorentz grds§X4, c) and induced trans-
formations of biquaternions, V, G, andF in Eq. (85) retain the invariant form
of Egs. (73). In the case of the ordinary Lorentz gr&@3, 1), we should set
L = R". The transformations of the group of the internal symmetry of potentials
G, Eg. (75), and the transformations G6f Eq. (85), from the complex Lorentz
group atL = 1 have the same form; i.e. they are not different. But transformations
of the field biquaternior in Egs. (75) and (85) are different. Therefore the trans-
formations of the potentiaks, and¢,, can be induced by the transformations of
the complex Lorentz grouQ(4, c) but the fieldsp,..,, ¢, and¢ cannot.

The possibility of considering transformations (75) for the field variables is
based on the fact th&t, = —¢ — i # 0 but transformations (85) are valid also
for F4 =0, i.e. for equations without additional scalar and pseudoscalar fields.
At ¢ = ¢ =0 andyg, = 0, Egs. (73) represent the quaternion form of the Proca
equations. For them the transformations (75) are not possible.

It should be noted that the transition to complex space-time is used in the
investigation of some general problems of quantum field theory; e.g. the solution
of some specific problems in electrodynamics (Newman, 1973; Weingarten, 1973).
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5. QUANTIZATION OF FIELDS

The quantization of Dirac—#tiler’s fields will be carried out by using an indef-
inite metric. It will be shown that the renormalization procedure is carried outin the
same manner as in quantum electrodynamics (Kruglov and Strazhev, 1982, 1984).

The Lagrangian of charged DiracaKler fields (63) within four divergences
can be written (when electromagnetic fields are absent) as

L= —W()(Td, +mw(x) (86)

whereW (x) = W(x)*T'4I"4 corresponds to the tensor representation of the Lorentz
group, where the 16-component wave functibridescribes scalar, pseudoscalar,
vector, and pseudovector fields. In the case of spinor representation of the Lorentz
group, V¥ is the direct sum of four Dirac bispinor€/(x) = W(x)*I'4, and the
guantizing procedure is similar to the Dirac theory.

Now we will consider the case of the boson fields. Using the canonical quan-
tization, one arrives at the commutators

[Wm(X), Un(X)i=r = (Ca)und(x — X) (87)

whereM,N =1, 2,...,16. Itfollows from (87) that it is necessary to introduce the
indefinite metric, as for finite-dimensional equations (with the diagonal miatjix
which describe fields with integer spins; only fields obeying the Petiau—Duffin—
Kemmer equation have positive energy (Gel'fatdl, 1963). With the help of
Egs. (10) and (14) we get the following commutation relations for the tensor fields:

[0(x), po(XNi=r = 18(x =X)  [&(X), 5 (X)]t=r = —i8(x — X))
[2k(X), omn(X =t = TemnX = X)  [@(X), 9a(X )izt = knd (X — X))

plus complex conjugated relations. In the momentum space, the equation of motion
of fields with spins 0 and 1, takes the form

(M=ip)¥=(p) =0 (89)

(88)

wherep = p,I', and¥*(p) are positive ¢ *(p)) and negative¥ ~(p)) frequency

parts of the wave function corresponding to positpge> 0 and negativey < 0
energies of particles, respectively. For each value of the energy, there are eight
solutions with definite spin, spin projection, and addition quantum number. Wave
functionsw*(p) andW¥*(p) can be expanded in spin states as follows

vEPE =ad(Pvy () YEPE) = aTEVie T ()Tl (90)

whereindex = 0,m,/,0(m,n = 1, 2, 3); operatoa’*(p) is the creation operator
of a particle in the scalar state £ 0), pseudoscalar stats £ 0), vector state
(s = m), and pseudovector state < fi); andag (p) is the annihilation operator of
a particle. The normalization conditions for solutions (90) are different from the
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Dirac bispinors case, and are given by
VR (P Canmviy () = Eesdse (91)

vsli(p)v"*(p)zesssrp—”; () = VSE)Tas)  (92)

VEEPITVH(—p) =0 (v¥H(p)" = v*>F(p) (93)

andss = 1 ats = 0, m, andes = —1 ats = 0, fi. We use here the normalization on

the charge and in the right hand sides of Egs. (91) and (92) there is no summation on
indicess. The summation formula on indicegorresponding to the normalization
conditions, has the form

S e (PIVE(P) = (mj | p) (04)
s Po /mn

If we take the trace of the matrix (94) and compare it with the expression (92)
summed over all statess we will get the equality. Multiplying Eq. (94) into the
matrix I'4, and then calculating the trace of both sides of the matrix equality, we
arrive at Eq. (91).

The appearance of the coefficiegt= %1 in the right hand side of Eq. (92)
reflects the fact that the energy of vector and pseudoscalar states is positive, and
the energy of pseudovector and scalar states is negative. We can also come to this
conclusion using the expression for the energy—momentum tensor

T = —W(X)[,0,%(X) (95)

which follows from the Lagrangian (86). Taking into account the expansions for
wave functions

W) = @) %2 [ [ @eP + v (ple ™I

(96)
B = @1) ¥ [0 ) + ¥ (e I
found from Eq. (95), the energy—momentum vector
P, = —i / W(X)T49, W (x) d3x (97)
and Egs. (90)—(93), we arrive at the following expression
(R EDVECECISCRESOSO LI

To have the positive energy in accordance with Eq. (98), we should use the
following commutation relations for creation and annihilation operators:

[a2~ (). " (p)] = [as (P). & F (P)] = £s8s:8(P — P') (99)
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With the help of Egs. (90), (94), and (99) we find

(W (), ‘I_’ﬁ()’)] = —(271)_3/ %e—iw—w(ﬁp

ad
- (FM Xy - m)MN A=) (100

(309, Tl = @) ° | W@Mdap

0
= —(FMM — m)MN Ay(X—y) (101)

It follows from Egs. (100) and (101) (by taking into account the definition
of the Pauli—-Jordan function (Ahieser and Berestetskii, 1969; Bogolyubov and
Shirkov, 1980)A¢ = i (A4 (X) — A_(X))) that

[W(x), U] =Sx—y) Sx—y)=S"(X-y)+S(x—Y)
Si(x—y)zq:(l" i—m) As(X—Y)

"
X,

(102)

where the functior§(x — y) satisfies the following equations

2
(FM aiﬂ + m) S(x—y) =i (aiﬁ — m2> Ao(X —y) =0 (103)

From Egs. (102), at = t, and using Egs. (100) and (101) we arrive at the
commutator (87). With the help of the relationships (102), we can find the chrono-
logical pairing of the operators:

(TWM)UNY))o = Syn(X — Y)
= O(X0 — Yo)Sin(X — ¥) — O(Yo — X0)Sun (X — ¥)

— i (i f) - m)MN eip(x_y) d4
@r)* ) p?+m2—ig

p (104)

which has formally the same form as in quantum electrodynamics (QED). Here
O(x) is the well-known theta function (Bogolyubov and Shirkov, 1980) =asis
the time.

It is seen from Eq. (104) that the Feynman rules for particles with spins 0
and 1 interacting with the electromagnetic field, eventually are the same as in
QED. We should not, however, here use the QED fagter(—1), wherel is the
number of loops in the diagram due to different statistics (Bogolyubov and Shirkov,
1980). The difference is in the number of spin states of the charged particle, and
in the dimension of matriceF,. As the propagator (104) formally coincides
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with the electron propagator of QED, so all divergences can be cancelled by the
standard procedure, i.e., we have here arenormalizable theory. All matrix elements
of quantum processes describing the interaction of particles with multispin 0, 1
coincide eventually with the corresponding elements in QED. The difference is in
the density matrix¥ - ¥ which we found in Section 2.

The commutation relations (99) with sigra)in the right hand side (at =
—1) require the introduction of the indefinite metric. The space of states is divided
into two substated, and H, with positive (H,) and negativel,) square norm.
The vector and pseudoscalar states correspond to a positive square norm, and
pseudovector and scalar states to a negative square norm. The total space is the
direct sum of the two subspackls and Hp,.

6. SUPERSYMMETRY OF DIRAC-K AHLER'’S FIELDS

Forthe Dirac—Kihler fields, it will be shown that in field theory itis possible to
analyze transformation groups with tensor and spinor parameters without including
coordinate transformations at the same time (Kruglov and Strazhev, 1981a).

A graduated Lie algebra must be absolutely related to transformations involv-
ing space-time coordinates (Taylor, 1979), but it seems perfectly obvious that this
is always the case if we are dealing with transformations whose generators are of
neither a tensor nor spinor nature (see e.g., Ogievetskii and Mezinchesku, 1976;
Konopel'chenko, 1977).

Atheory of Dirac—Kahler's fields, however, raises the possibility of construct-
ing a transformation group with tensor and spinor generators which does not at the
same time include coordinate transformations.

Let us consider the field equations

(yﬂ Bt S+ m2>) GO+ (Mo~ MGG =0 (105)

wherey, are the Dirac matrices, and the mat@xx) is

1 L~ L~
G(X) = l//O(X)|4 - %(X)m + EI//[MV] (X)V[MV\}] +1 wu(X)VuVS - ”/IO(X)VS
(106)

The quantitieso(x), ¥,.(X), Y101 (X), ¥,.(X), and o(x) in Eq. (106) are,
respectively, a scalar, a vector, an antisymmetric tensor, a pseudovector, and a
pseudoscalar; under the Lorentz groGgx) transforms as follows:

G(x) > Gt(x) =s@x)s! s= exp(%slwymyv]> (107)

wheree,,, are the Lorentz group parameters. Multiplying Eq. (105) successively
by the Clifford-algebra elemenis: ila, y,., (1/2)y1.v., v. s, andys, and taking
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the trace, we find the tensor equations which coincide with Egs. (9) including the
massive and massless cases. The case of a massless field corresponds to the choice
m; = 0, while a massive field (ah; = m, = m) is described by an equation of

the type

(yud, +mG(x) =0 (108)

The matrix equation (108) is equivalent to the massive Diradi" equa-
tion. It is obvious that Eq. (108) describes spinor particles when thel 4natrix
G(x) represents four bispinors, and that it describes scalar, vector, antisymmetric
tensor, pseudovector, and pseudoscalar fields v@{en is expanded by (106).
For the spinor case, howevé&(x) transforms as follows (in this case we use the
index 1/2):

1
Gual) = G500 =Gt S=exp{gewm)  (109)
The Lagrangian corresponding to Eq. (108) is
—— — < =
L= —Etr [G(X)7.98,G(X) — G(X)¥ 8 . G(X) + 2mG(x)G(x)] (110)

whereG(x) = y4G(X)ya, the arrow specifies the direction in which the differential
operator acts, and tr means the trace of matrices. After taking the trace in Eq. (110),
we arrive at the Lagrangian which is equivalent to Eq. (86).

Equation (108) is invariant under the following transformations of the matrix
quantityG(x):

G(x) —» G'(x) = G(X)D (1112)

The relativistic invariance of Eq. (108) is retained if the maBixransforms
under the Lorentz group as

D(x) - DY(x) = SDS* (112)

i.e., if the generators of the transformation group (111) are of a tensor nature with
respect to the Lorentz group. In the spinor case, all parameters of transformation
(111) are scalars. Therefore the Lorentz transformations (109) and the transforma-
tions of the internal symmetry (111) commute each other. If we make the Lorentz
(109) and symmetry (111) transformations for the case of sgindne gets

G/2(x) = Gy/p(X) = SG/2(x)D (113)

The commutation of these two groups of transformations is obvious from Eq. (113).
If we put D = St in Eq. (113) we arrive at the law of the transformation of the
tensor fields (107). That is why it is possible to describe the spinor particles with
spin 1/2 by the tensor fields using the expansion (106). The same conclusion
follows from the formalism of Section 2.
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The requirement that the Lagrangian (110) be invariant under transformations
(111) leads to the condition

DD=1 D(X)= D"y (114)
Writing D in the form

. 1
D= exp(l (o4 I4 + ﬂum + EQ#\))/[#)/V] + S/LV/LVS + :0)/5) (115)

whereil s, y,, %y[ﬂyv], v, vs, andys are the generators of the groGh.(4, C), we
find from condition (114) a restriction on the parametets= «, 85, = Bm, B; =
—Ba, in = Qmn, 2y = —Qma, 8, = 8m, 85 = —8a4, andp* = p, in accordance
with a singling out of theSQ4, 2)® U (1) subgroup (or locally isomorphic to
U (2, 2)). The subgroup) (1) corresponds to the gauge transformations that con-
serve electric current. So the symmetry group of Eq. (10&8L#, C) and the
corresponding Lagrangian 804, 2)® U (1) for a case of tensor fields. In the
case of spinor fields, the symmetry groupliét), in accordance with conclusions
of Section 3.

From the invariance of the Lagrangian (110) under transformations (111)
((114) is taken into account) we find conservation laws for quantities of the type

Oun = 51 (4 GXAGH) — 1 GOri W) (116)

whereya = ilsandy,, (1/2)y. %, YuVs: v5, andy, are the complex conjugated
Clifford-algebra elements. The conservation currents (116) were found in Section 3
in another formalism. From the physical standpoint, the appearance of this symme-
try results from a mass degeneracy of the spin states of the particle which are mixed
by transformations (111). The symmetry is preserved in a nonlinear generalization
of Eq. (108) (equations of the Heisenberg type):

(0, + MG(X) + 1G(X)G(X)G(X) = 0 (117)

wherel is the coupling constant.

The matrixG(x) corresponds to a second-rank bispi. If the bispinor
satisfies the Dirac equations with respect to each index simultaneously, we find
a system of Bargmann—-Wigner equations (Novozhilov, 1975) which describe a
particle with spin 0 and system of particles with spin 1.

By jointly analyzing Egs. (108) and the Dirac equation

(Vb + MW(X) = 0 (118)

which is invariant under phase transformations of wave funcligx) [\ (x) —
W'(x) = exp(0)¥(x)], we can construct a symmetry group which incorporates
these phase transformations and transformation (111) as a subgroup. The systems
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(108) and (118) are invariant under the following transformations:
G'(x) = G()D + ¥(x) - ¢
W'(x) = W(x)1 + G(x)§

where W(x) - ¢ = (W, (x) - ¢f) is the matrix-dyad,; and & are bispinor-

parameters, antlis the complex number parameter. Transformations (119) form

a group with the following parameter composition law:
D”ZD,D‘I—S,'C CHZ)\'Ié._'_é./D
)\// — )\/)\’ + g/é_ é_// — %./k + D/E

_Under the Lorentz group, the parametgr&nd ¢ transform as bispinors

¥ andW, respectively, and are constant quantities, independent of the space-time

coordinates. In order to preserve the relationship between the spin and the statistics,

we must require that the parameteend; anticommutefé,, &} = {¢, ¢} = 0.

The need for this condition can be seen directly from the commutation relations

for boson and fermion fields and from the explicit form of transformations (119).

To establish the group structure of transformations (119) it is convenient to
use a 20-component column functidx) whose first components are formed by
the elements of the lines of the mat®¢ (x) (in the order of an alternation of lines

and of the elements in them). The other four components correspond to the wave
function¥(x), so

(119)

(120)

Gg(X)) (121)

sz(%a)

A direct check confirms the following form for writing transformations (119):

(7%)
P'(x) = (,®B)d(X) B= C (122)

where¢ | is a column,£ is a row, and PT),s = Dg,. Under the condition
tr(DT) = 1, the transformations in (122) correspond to the graduated Lie alge-
braSL(4 | 1), in the notation of Freund and Kaplansky (1976). The form in (122)
for the transformations (119) is of a standard type (Berezin, 1979), wibere (
andA are even elements of a Grassmann algebragaaud ¢ are odd elements
(i.e., anticommuting elements).

A fundamental distinction between this symmetry and the “ordinary” super-
symmetry, with tensor and spinor generators, is that the corresponding superalgebra
is closed without appealing to the generators of a Poegeslp.

By analogy with the description of fields with a maximum spin of 1, fields
with a maximum spin 0§/2 can be described by the equations

(V49 + MGuyeya, = 0 (123)
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Dirac equation (118) and Eq. (108) constitute a particular case of Eq. (123),
with (G,,) = ¥ (x) and Gg,a,) = G(X). A particle with a maximum spin of 2
and a rest mass is described, for example, by the fun@ign,.. These internal-
symmetry transformations can be generalized immediately to the case of particles
with maximum spins of 1 and/2, which are the particles of the greatest physical
interest.

What possible physical applications could this symmetry have? In an analysis
of systems consisting of two (mesons) and three (baryons) quarkssstte, and
inthe absence of a spin—spin interaction, the hadrons may be described as multispin
particles with a rest mass. In this case the symmetry under consideration holds rig-
orously, and the hadron interactions can be associated with the internal-symmetry
groupSQq3, 1)® SU3), whereSQ3, 1) is the internal-symmetry group, which
forms with the Poinca group a semidirect product. As has been mentioned in
the literature (Schelest, 1967) the latter property is a necessary feature of strong-
interaction symmetry groups with incorporated quark spin. From this standpoint
the considered supersymmetry corresponds to an internal symmetry of a field
theory which incorporates, along with composite particles, their structural com-
ponents. A further study of this symmetry will be required, of course, to take into
account its possible extension to interacting fields.

7. NON-ABELIAN TENSOR GAUGE THEORY

We will show the possibility of constructing a gauge model of interacting
Dirac—Kahler fields where the gauge group is the noncompact g8fig, 2)
under consideration (Kruglov and Strazhev, 1981b).

The starting point in the introduction of Yang—Mills fields is the localiza-
tion of parameters of the symmetry group, the transformations of which do not
affect the space-time coordinates. We consider fidi¢s) that possess certain
transformation properties under the Lorentz group and that may be transformed
under a certain representation of the internal symmetry group (usually compact
and semisimple of typ8Un)). For example, QCD considers the fermionic fields
of spin 1/2, which are transformed under the fundamental representati®id 8J,
in which the colored quarks are the principal objects. In other words the concept
that there exist some internal quantum numbers (isospin, colour, etc.) is a requi-
site physical element of non-Abelian gauge theory. Describing particles without
involving internal (“isotopic”) spaces e.g., the works ofildét al. (1959), Durr
(1977), and Budini (1979) has been a long-standing problem; it has, however, been
done using an adequate generalization of the known relativistic wave equations
(RWE) (see Ginzburg and Man’ko, 1976, and other references below). It becomes
imperative today, for an approach of this kind, to imply the concept of a non-Abelian
gauge field—the carrier of interactions. The possibility of constructing the gauge
theory is inherent in the theory of RWE. The theory might be based on the concept
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of a multispin or, equivalently, of a particle having several spin states. The equation
remains coupled—i.e., it describes, as the ordinary Dirac equation does, a particle
(and antiparticle) having a set of states, rather than a set of particles, as is the case
with, for example, the equation corresponding to the direct sum of the Dirac equa-
tions. Transformations of internal symmetry groups result in a mixture of states
related to different values of the spin squared operator. Their localization leads to
non-Abelian gauge fields having multispin O, 1, 2. In this case the dynamics of
the interaction of particles with multispin 0, 1 are associated with the change of
their state through the exchange of particles with maximum spin 2. The theory
constructed in this manner represents a space-time analogue of gauge theory with
internal symmetry.

An attractive possibility is to describe quarks by the Diraahl€i equations.
Becher (1981), Rabin (1982), Becher and Joos (1982), Batrdd5(1982), Aratyn
and Zimerman (1986), Joos and Schaefer (1987), Edwetrdd. (1988), and
Jourjine (1987) used lattice version of the DiraaHer equations describing
fermions by inhomogeneous differential forms. This is equivalent to introduc-
ing a set of antisymmetric tensor fields of arbitrary rank for describing the fermion
matter fields. As shown in the Introduction, we arrive at the Diraa&r formu-
lation which includes a scalar, a vector, an antisymmetric tensor, a pseudovector,
and a pseudoscalar field. Here we consider the continuum case of the equations and
introduce non-Abelian tensor gauge fields (gluon fields) for interacting quarks. In
this point of view, quarks possess the multispin 0, 1. As we have already shown,
in the continuum case the equation for the 16-component Dirac equation can be
reduced to four independent 4-component Dirac equations. We proceed to use the
language of tensor fields to formulate non-Abelian tensor gauge theory.

The requirement that the Lagrangian (63) be invariant under local transfor-
mations (69) leads to the necessity of introducing a compensatingﬂﬁeld/here
the indexB is “internal” (in our case it represents a set of tensor indices specify-
ing a scalar, a four-vector, a skew second-rank tensor, an axial four-vector, and a
pseudoscalar). The gauge invariant Lagrangian has the known form

L=—WX)[T.(3, —ieA, — gAPI®) + m|w(x) - %]—"ﬁv - %(Ffv)z (124)

where
Fu =0, A, —0,A
e " L (125)
B B B B C AD
FM.U - 8MAU - 8DAH - EgCCDA[;LAU]
andcg , are the structure constantss®(4, 2) group;7,,, and FMBV are the strengths
of the electromagnetic and “gluon” fields, respectivejys the “gluon” coupling
constant; andB = {u, [aB], ft, 0}. The localization of théJ (1) group produced
the electromagnetic field with four-potentia,.
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The corresponding wave equations which follow from the Lagrangian
(124) are

Fuw = Jy (126)
[Tu(8, —ieA, —gAZI®) + m]¥(x) =0 (128)

where J, = ieWl, W, JB = gWI,1B¥; 18 =T, (1/4).I,, Ts, and [T,
(see Eq. (66)). The conservation current for the non-Abelian fields is

~B

J, =32 —gcBcASFD, (129)

In the general case the gauge field multipk§sinclude second-rank tensors

AY, A% athird-rank tensor antisymmetric over two indige4"!, and an axial four-
vector A2. The structure constantg , transform in the tensor representation of
the Lorentz group. The gauge fields carry the maximal spin 2. Indeed, the second-
rank tensorA? is transformed on the following superposition of the irreducible
representations of the Lorentz group:

11 11
- =2 )1=0,00, ) (1,0d(1,1 130
(33)2(33)-Coe0neaneay a3
corresponding to the fields with the spins 0, 1, and 2. The third-rank teX$gr
realizes the representations

(3)ownenon(31)a(32)e(3)e(33)
(131)

which also contain fields with spins 0, 1, and 2; hence we come to the same
conclusion about the spin of the gauge fields.

We can also consider the localization of some subgroups of the total group
SQ4, 2). Then the Lagrangian (124) will be invariant under the local transfor-
mations of this subgroup. The main requirement is to extract the subgroup in a
relativistic manner. We suggest the following subgroups and their corresponding
generators

SA3, 1)~ {lp}  SA3, 2)— {ljui, o}
Sa4, 1)~ {lpwy, I} GLEA, R — ()

The possibility of constructing a dynamic theory with all the main properties
of gauge theories, but based upon notions of space-time rather than on new internal
quantum numbers, is of evident interest.

(132)
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The absolute group symmet@/corresponds to the semidirect multiplication
of the Poincae’groupP on the internal symmetry group (SQ(4, 2) group):

G=P-D (133)

and the transformations of the symmetry group (Group D) commute with the
transformations of the subgroup of four-translatidns Following Budini and
Fronsdal (1965), it is possible to define the “auxiliary” PoircgroupP’, which

is isomorphic toP, by the relationships

P = {L;“)} . T4 L:/,U = Lp,v - I;w (134)

wherel,, are the generators of the internal symmetry gr&@3, 1) (see (66)
and (69)). As a result we have

G=P.D=P®D (135)

i.e., the absolute group symmet@ represents the direct product of the aux-
iliary Poincag group P’ and the internal symmetry group, taking into ac-
count that [_jﬂ,_lw] = [T4, I,,u] = 0. In our case of the Dirac-diler equation,
I =@/4@r,Tr, -T,I,)and

, 1
L, = Z(F”FV —-I,T,) (136)

The generators of the “auxiliary” Lorentz grouy), commute with the gener-
ators of the internal symmetry grodigs (67) and the wave function transforms in
the spinor representation of the grodg,,}. This confirms that the Dirac-ailer
equation describing a set of antisymmetric tensor fields by the inhomogeneous
differential forms, can describe spinZ particles (pseudoscalar and pseudovec-
tor fields are equivalent to the antisymmetric tensor of fourth and third ranks,
respectively). The non-Abelian gauge theory under consideration is an analogy to
the ordinary non-Abelian gauge theory of spif2Jparticles interacting via gluon
fields with internal symmetry grou®Q(6) (or SU(4)). However in our case we have
noncompact gauge group4, 2) (orSU2, 2)) which requires the introduction
of an indefinite metric.

8. CONCLUSION

We have considered Dirac-aliler equations which can be represented as the
direct sum of four Dirac equations. The main feature of such scheme is the presence
of the additional symmetry associated with noncompact group in the Minkowski
space. The transformations of this group mix fields with different spins and they do
not commute with the Lorentz transformations. As a result, the group parameters
realize tensor representations of the Lorentz group. This kind of symmetry differs
from the color and flavor symmetries of QCD and supersymmetry. Atthe same time
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it was shown that the Dirac-afiler fields allow us to introduce graduated groups
with tensor and spinor parameters without including coordinate transformations.

The field scheme considered allow us to construct gauge theories with dif-
ferent noncompact groupd(3, 1), O(4, 2), andO(3, 3), where “gluon” fields
carry spins 0, 1, and 2. Some of these subgroups become compact groups in the
Euclidean space-time. The theory constructed represents a space-time analogue
of gauge theory with internal symmetry but there is a difficulty arising from the
presence of an indefinite metric. The field schemes considered can be applied to a
construction of quark models or for the classification of hadrons by noncompact
groups (see Kirchbach, 2000), and possibly, for studying subquark matter.

The calculated density matrices (matrix-dyads) for fields and the method of
computing the traces of 16-dimensional Petiau—Duffin—Kemmer matrix products
allow us to make evaluations of different physical quantities in a covariant manner.

APPENDIX A

A method of computing the traces of 16-dimensional Petiau—Duffin—Kemmer
matrix products will be considered (Bogush and Kruglov, 1979).

In order to compare the 16-component model of vector fields (including scalar
states) with the Proca and Petiau—Duffin—-Kemmer theories we consider here the
density matrices in the form of matrix-dyads (40) for pure spin states. Taking into
account Egs. (16) itis possible to have the simpler expressions by using equalities
o2

)
> p

0’2 02 02
® — M7 _ 0 ) — p)
> p p > p 5 p p

0'2 ~ 0.2
2 ) p® = p® 72 ) pO) = pO@
(1-%)p=p®  (1-%)p0=p

where p® = p, g0, p® = p, D, p@ = p, AP, and p® = p, 0. The rela-
tionships (A1) are obtained by using Eqgs. (16) and (24) and the expression for the
squared spin operator:

(A1)

i 1 - __ 7
02 = [%ewaﬂz(rﬂl—‘v — FVF[J. + F;LFV — FMFV)] (AZ)

Taking into account relations (A1), the projection matrix-dyads (40) are trans-
formed into

1 . . _
AWM = —4m2|p(1)(| p® —em)oP (0P + 5) = v . w® (A3)
~ 1 . I ~ ~ ~ ~ o~
AD = —4m2Ip(1)(l ph —em)oP (0P + 55) = v . w® (A4)

1 —
1 ; ; 1 1
AP = —ip®(ip® — em)(1 - 0{M?) = w§? . w§) (A5)
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- 1 - ~ = 1y —A
i . . 1 1
AE)) — 2m2|p(l)(|p(l) _ Em) (1 _ 0‘()1)2) — “IJ(() ) . \IJ(() ) (A6)

1. .
A = P pO(ip®@ —em) (1~ o ?)

1. . —
~ 1 ~ ~ ~
0 i~ (0) (i 1 (O 0)2
A® = 2 ipO(ip® — em)(1 - 0?)
1 . N ~ ~ o~
= _2m2|p(0)(|p(0) — Sm) — \IJ(O) . \II(O) (A8)

where we also used the equalities

pO(1—00?) = p@  pWo, = pW D = _|'a pDeanepapH D
and so on.

The matrix-dyads (A3) and (A5) correspond to the vector state, (A4) and (A6)
to the pseudovector state, (A7) to the scalar state, and (A8) to the pseudoscalar
state. Eventually Egs. (A3)—(A8) coincide with solutions of 10-component (for
vector and pseudovector states) and 5-component (for scalar and pseudoscalar
states) free Petiau—Duffin—-Kemmer equations.

It is known that cross-sections for the scattering processes are summed to
evaluate the transition probabilities for a particle going from the initial to the final
states. These probabilities are proportional to the squared modules of the matrix
elements which can be written as (see e.g., Fedorov, 1959, 1979)

IM[? = étr{QI; QI (A9)

whereQ is the vertex operatoQ = nQ*n(n = I'4['4 is the Hermitianizing ma-
trix, Q* is the Hermite conjugated operator), and the matrix-dyidgsind I,
correspond to initial and final states, respectively. Therefore we need the traces
of 16-dimensional Petiau—Duffin—-Kemmer matrix products to calculate some pro-
cesses with the presence of vector and scalar fields.

It is easy to verify that the property of traces of thex1 86 Petiau—Duffin—
Kemmer matrice$(" (16)

tr{ﬂ/uﬂuz ce ﬁ/tn} = tr{(PIBunﬂm P)(P,BMZ,BM P) cee (PIBMnfz:B/tnfl P)}
+tr{(PBBu:P) (PBusBusP) - -+ (PBu.Bun P)}  (AL0)

is valid, whereP = £%0 4 ¢90 4 (1/2)el1Iw] s the projection operator. The
analogous identity was derived in Bogush and Moroz (1968) for the §band

10 x 10) Petiau—Duffin—Kemmer matrices. The trace of the odd-numbered matri-
cesﬂl(f) is equal to zero. Equation (A10) is valid for any Petiau—Duffin—-Kemmer
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matrix given by (16). Using the properties of the entire matrix algetr& we
find

1 ~
PRSP = (Ol éewwglpwl,o

PEIBIP = elilo 4 %eﬂmgﬁ,[pwl

PAIBHIP = S/Lv‘?é'a + glendlov]

PEOIBIIP = 6,620+ %ek,wwemmg[ﬂwl[w] (A11)
PBOBIP = PEOIBIP = (0]

P:B;(j_)ﬁso)P — p‘gl(Ll)/gS—)p — glvul.0

PP = PEIBOP =5,,2°

The relations (A10) and (A11) with the help of the equalitigg4r®} =
(SA,Bn 8[/1,1)][,00] = 5,11/)8\}0 - 8#081),01 EA’BEC'D = 8BC8A'D! and @A'B)CD = (SACSBD
allow us to find traces of any Petiau—Duffin—Kemmer matrices.

APPENDIX B

We analyze here the Lorentz transformations in the framework of the quater-
nion algebra. The quaternion algebrais defined by four basis elemeatgey, e4)
(see e.g., Casanova, 1976) with the multiplication properties

2

&6 =-6 &= &&=-€ (B1)
61 =6 ee3=-6  €6n=Eenes=E€n

wherem = 1, 2, 3 ande; = 1 is the unit element.
The complex quaternion (or biquaternianjs

Q= 0u€, = Om€m + Usa€4 (B2)

whereq,, are complex numbers){ = Req,, +ilmgq,,i2 = —1). Using the laws
of multiplication (B1), we find that the product of two arbitrary quaternigrasd
g’ is defined by

a9’ = (0ady — AmAn)€s + (040m + dady, + €mnknOi)Em (B3)

It is convenient to represent the arbitrary quaterniongas qs + q (so
04&4 — Ua, dm€m — ), Whereqy and g are the scalar and vector parts of the
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guaternion, respectively. With the help of this notation, Eq. (B3) can be rewrit-
ten as

a9 = 0a0; — md, + d4q + Gaq’ + [0, q'] (B4)

Thus the scalarq ') = gma},, and vector ¢, g'] products are parts of the
guaternion multiplication. It is easy to verify the combined law for three
guaternions:

(0102)03 = 01(0203) (BS)

The operation of quaternion conjugation (hyperconjugation) denotes the tran-
sition to

0 =04€s — Ome€m =Ga — g (B6)
so that the equalities
M+R=0+0 0 =00 (B7)

are valid for two arbitrary quaterniomg andg,. The modulus of the quaternion
|q| is defined by

ol = /ad = /a? (B8)

This formula allows us to divide one quaternions by another, and thus the
guaternion algebra includes this division. For example, the simple equations and
their solutions are given by

0201

0oX = 01 XL = |qT|2
_ (B9)

0102

X = Xp = ——

Gk =0q R e

Quaternions are a generalization of the complex numbers and we can con-
sider quaternions as a doubling of the complex numbers. They are convenient
for investigating the symmetry of fields and relativistic kinematics. In particu-
lar, the finite transformations of the Lorentz eigengroup are given by Casanova
(1976)

X = LxL* (B10)

wherex = X4 + X is the quaternion of the coordinateg & it, t is the time, and

Xm are the spatial coordinated), is the quaternion of the Lorentz group with
the constraintLL =1,L* =L} — L*, and* means the complex conjugation.
The biquaterniorL with the constrainLL = 1 is defined by six independent
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parameters which characterize the Lorentz transformations. The squared four-
vector of Coordinatesgﬁ, is invariant under the transformations (B10)

X2 =xX = LXL*L*XL = xX = X2 (B11)
asL*L* = L*L* = 1. Equation (B11) shows that the six-parameter transforma-
tions (B10) belong to the Lorentz grogiX3, 1).

The complex Lorentz group((4, c) (see Bogush and Fedorov, 1977) acts in
complex space-time with the coordinatgs= (zn, izg). The transformations of
the complex Lorentz group are defined by

Z=1LzR (B12)

where independent biquaterniobsand R satisfy the requirement thatl =1
andRR = 1. As aresultthere are 12 independent parameters definigfXdec)
group in Whichzﬁ remains invariant. Indeed,

=77 =LzRRzL = 7z2=7, (B13)

In the case of the ordinary Lorentz group we should Rut L*.

It should be noted that quaternion algebra can be realized using the Bauli 2
2 matricesk(k = 1, 2, and 3). Setting, = |5, e&x = i ¢, and using the properties
of Pauli's matrices

TmTn = | €mnkTk + Smn
(B14)
T Tk + T = 20ik

we come to the quaternion algebra (B1).

REFERENCES

Ahieser, A. |. and Berestetskii, V. B. (196@uantum Electrodynamic®Viley Interscience, New York.

Aratyn, H. and Zimerman, A. H. (1986Physical Review D: Particles and FielS8, 2999.

Banks, T., Dothan, Y., and Horn, D. (198Physics Letters B17, 413.

Becher, P. (1981Physics Letters B04, 221.

Becher, P. and Joos, H. (198Zgitschrift fir Physik C15, 343.

Benn, I. M. and Tucker, R. W. (1982physics Letters B19, 348.

Benn, I. M. and Tucker, R. W. (1983a&ommunications in Mathematical PhysikS, 341.

Benn, I. M. and Tucker, R. W. (1983}hysics Letters B25 47.

Benn, |. M. and Tucker, R. W. (1983d}hysics Letters B32, 325.

Berezin, F. A. (1979)Yadernaya Fizik&9, 1670.

Bogolyubov, N. N. and Shirkov, D. V. (1980ntroduction to the Theory of Quantized Field¥iley,
New York.

Bogush, A. A. and Fedorov, F. I. (197 Reports on Mathematical Physit4, 37.

Bogush, A. A. and Kruglov, S. I. (1978Yestzi Akademii Nauk BSSR, Seryya Fizika-Matematychnykh
4, 58 (in Russian).



686 Kruglov

Bogush, A. A. and Kruglov, S. I. (1979estzi Akademii Nauk BSSR, Seryya Fizika-Matematychnykh
4,50 (in Russian).

Bogush, A. A, Kruglov, S. I., and Strazheyv, V. |. (1978)oklady Akademii Nauk BSSE, 893
(in Russian).

Bogush, A. A. and Moroz, L. G. (1968)ntroduction to the Theory of Classical Fieldslauka i
Tekhnika, Minsk (in Russian).

Borgardt, A. A. (1953a)Zhurnal Eksperimental’ noi i Teoreticheskoi Fizi2d, 24.

Borgardt, A. A. (1953b)Zhurnal Eksperimental’ noi i Teoreticheskoi Fizitd, 284.

Borgardt, A. A. (1956)Zhurnal Eksperimental’ noi i Teoreticheskoi Fizik®, 334 [Soviet Physics-
JETP3, 238 (1956)].

Borgardt, A. A. (1957)Zhurnal Eksperimental’ noi i Teoreticheskoi Fizi8, 791 [Soviet Physics-
JETP6, 608 (1958)].

Borstnik, N. M. and Nielsen, H. B. (1999). IAroceedings of International Workshop on “Lorentz
Group, CPT and Neutrings(A. E. Chubukalo, V. V. Dvoeglazov, D. J. Ernst, V. G. Kadyshevsky,
and Y. S. Kim, eds.), Zacatecas, Mexico, pp. 27-34.

Bruno, B. (1948)Ark. f. math., astron. och fy84(22), 1.

Budini, P. (1979)Czechoslovak Journal of PhysicB, 51.

Budini, P. and Fronsdal, C. (196%5)hysical Review Letter4, 968.

Bullinaria, J. A. (1983)Physics Letters B33 411.

Bullinaria, J. A. (1985)Annals of PhysicéNew Yorl 159, 272.

Bullinaria, J. A. (1986)Annals of PhysicéNew Yorl 168 301.

Bullinaria, J. A. (1987)Physical Review D: Particles and Fiel@§, 1276.

Cabibbo, N. and Ferrari, E. (1962yuovo Ciment@3, 1147.

Casanova, G. (1976). L'atdpre Vectorielle, Presses Universitaires de France, Paris.

Duffin, R. J. (1938)Physical Reviev4, 1114.

Durand, E. (1975)Physical Review D: Particles and Field4, 3405.

Dirr, H. P. (1977). InGroup Theoretical Methods in Physjcksecture Notes in Physics, Vol. 79,
Springer, Berlin, p. 259.

Darr, H. P., Heisenberg, Vit al. (1959).Zeitschrift fir Naturforschundl49, 441.

Edwards, R., Ritchie, D., and Zwanziger, D. (1988)clear Physics R96, 961.

Ericsson, A. (1948)Ark. f. math., astron. och fy84(21), 1.

Fedorov, F. I. (1959)Soviet Physics-JETB5(8), 339 Zhurnal Eksperimental’ noi i Teoreticheskoi
Fiziki 35, 493 (1958)].

Fedorov, F. I. (1979)The Lorentz GroupNauka, Moscow (in Russian).

Feschbach, H. and Nickols, W. (1958nnals of PhysicéNew Yorl 4, 448.

Freund, P. G. O. and Kaplansky, |. (1978)urnal of Mathematical Physics?, 288.

Gamblin, R. L. (1968)Journal of Mathematical Physick0, 46.

Gel'fand, I. M., Minlos, R. A., and Shapiro, Z. Ya. (196Representations of the Rotation and Lorentz
Groups and their Applicationdergamon, Oxford.

Ginzburg, V. L. and Man’ko, V. I. (1976)Soviet Journal of Particles and Nucl&, 1 [Fizika
Elementarnykh Chastits i Atomnogo Yadte8 (1976)].

Gitman, D. M. and Shelepin, A. L. (2001pternational Journal of Theoretical Physid§), 603.

Graf, W. (1978) Annales de I'Institut Henri Poinca&, Section A: Physique Theoriq@8, 85.

Hodge, W. V. D. (1951)Theory and Applications of Harmonic Integra8ambridge University Press,
Cambridge.

Ivanenko, D. and Landau, L. (192&geitschrift fir Physik C48, 340.

Ivanenko, D. D., Obukhov, Yu. N., and Solodukhin, S. N. (1985). Trieste Report No. IC/85/2, Interna-
tional Centre for Theoretical Physics (ICTP).

Joos, H. and Schaefer, M. (198Zgitschrift fir Physik C34, 365.

Jourjine, A. N. (1987)Physical Review D: Particles and Fiel@8, 757.



Dirac—Kahler Equation 687

Kahler, E. (1962). Rendiconti di Matemati2z&(3/4), 425.

Kemmer, H. (1939)Proceedings of the Royal Socidty3 91.

Kirchbach, M. (2000)International Journal of Modern Physics ¥5, 1435.

Kogut, J. and Susskind, L. (197%)hysical Review D: Particles and Fields$, 395.

Konopel'chenko, B. G. (19775oviet Journal of Particles and Nucl8j 57 [Fizika Elementarnykh
Chastits i Atomnogo Yadi@ 135 (1977)].

Kruglov, S. I. (1978)Doklady Akademii Nauk BSSR, 708 (in Russian).

Kruglov, S. I. (1979). PhD Thesis, Minsk, Belarus (in Russian). Internal Symmetries and Electromag-
netic Interactions in Theory of General Type Vector Fields, Institute of Physics, Academy of
Sciences of BSSR.

Kruglov, S. I. and Strazheyv, V. |. (1978%oviet Physics Journ&l, 472 [lzv. Vuz. SSSR, Fizika 77
(1978)].

Kruglov, S. I. and Strazhev, V. |. (1981&oviet Physics Journ&4, 1143 Jzv. Vuz. SSSR, Fizikz,

82 (1981)].

Kruglov, S. I. and Strazhev, V. I. (1981b). Proceedings of the IV International Seminar on High
Energy Physics and Quantum Field The@Pyotvino, July 1981), Vol. 1, pp. 105-110.

Kruglov, S. I. and Strazhey, V. I. (1982). Preprint No. 275, Institute of Physics, Academy of Sciences
of BSSR, Minsk (in Russian).

Kruglov, S. I. and Strazhev, V. I. (1984)estzi Akademii Nauk BSSR, Seryya Fizika-Matematychnykh
2, 79 (in Russian).

Kruglov, S. 1., Strazheyv, V. ., and Shkolnikov, P. L. (1978a). Preprint No. 159, Institute of Physics,
Academy of Sciences of BSSR, Minsk (in Russian).

Kruglov, S. I., Strazhev, V. I., and Tolkachev, E. A. (1978¥#stzi Akademii Nauk BSSR, Seryya
Fizika-Matematychnyk®, 117 (in Russian).

Newman, E. I. (1973)Journal of Mathematical Physics4(1).

Novozhilov, Yu. V. (1975)Introduction to Elementary Particle Thegriergamon, Oxford, pp. 384.

Obukhov, Yu. M. and Solodukhin, S. N. (1993koreticheskaya i Matematicheskaya Fizia 276
[Theor. Math. Phys94, 198 (1993)].

Ogievetskii, V. I. and Mezinchesku, L. (197@&oviet Physics-Uspeki8, 960 [Uspekhi Fizicheskikh
Nauk117, 637 (1975)].

Pestov, A. B. (1978)Teoreticheskaya i Matematicheskaya FiZ#a 48.

Petiau, G. (1936). Thesis, Paris.

Post, E. I. (1974)Physical Review D: Particles and Fiel@ 3379.

Rabin, J. M. (1982)Nuclear Physics R01, 315.

Schelest, V. P. (ed.) (1967). Rroceedings of High-Energy and Elementary-Particle Physiesikova
Dumka, Kiev (in Russian).

Simonov, Yu. A. (2000)Nuclear Physics 5592, 350.

Solodukhin, S. N. (1992)nternational Journal of Theoretical Physi&d, 47.

Stepanovskii, Yu. P. (1966)krainian Fizicheskii Zhurnall, 813 (in Russian).

Susskind, L. (1996Physical Review D: Particles and FieldsS, 1043.

Talebaoui, W. (1993Physics Letters A78 217.

Talebaoui, W. (1994)Journal of Mathematical Physi&5, 1399.

Taylor, J. G. (1979)Physics Letters B4, 79.

Weingarten, Don (1973Annals of PhysicéNew Yorl 76, 510.

Zaitsev, G. A. (1969)Soviet Physics Journdl2, 1523 Jzv. Vuz. SSSR, Fizik&, 19 (1969)].



