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Tensor, matrix, and quaternion formulations of Dirac–K¨ahler equation for massive and
massless fields are considered. The equation matrices obtained are simple linear com-
binations of matrix elements in the 16-dimensional space. The projection matrix-dyads
defining all the 16 independent equation solutions are found. A method of computing
the traces of 16-dimensional Petiau–Duffin–Kemmer matrix product is considered. We
show that the symmetry group of the Dirac–K¨ahler tensor fields for charged particles is
SO(4, 2). The conservation currents corresponding this symmetry are constructed. We
analyze transformations of the Lorentz group and quaternion fields. Supersymmetry of
the Dirac–Kähler fields with tensor and spinor parameters is investigated. We show the
possibility of constructing a gauge model of interacting Dirac–K¨ahler fields where the
gauge group is the noncompact group under consideration.

KEY WORDS: symmetry; quaternions; gauge models; noncompact groups; super-
symmetry.

1. INTRODUCTION

The important problems of particle physics are the confinement of quarks and
the chiral symmetry breaking (CSB) (Simonov, 2000). Both problems cannot be
solved within perturbative quantum chromodynamics (QCD).

One of the promising methods in the infrared limit of QCD is lattice QCD.
Lattice QCD takes into account both nonperturbative effects—CSB and the con-
finement of quarks, and provides computational hadronic characteristics with good
accuracy. A natural framework of the lattice fermion formulation and some ver-
sion of Kogut–Suskind fermions (Kogut and Susskind, 1975; Susskind, 1996) are
Dirac–Kähler fermions (Aratyn and Zimerman, 1986; Bankset al., 1982; Becher,
1981; Becher and Joos, 1982; Edwardset al., 1988; Joos and Schaefer, 1987;
Jourjine, 1987; Rabin, 1982). The interest in this theory is due to the possibility of
applying the Dirac–K¨ahler equation for describing fermion fields with spin 1/2 on
the lattice (Aratyn and Zimerman, 1986; Bankset al., 1982; Becher, 1981; Becher
and Joos, 1982; Edwardset al., 1988; Joos and Schaefer, 1987; Jourjine, 1987;
Rabin, 1982).
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Recently much attention has been paid to the study of the Dirac–K¨ahler field
in the framework of differential forms (Benn and Tucker, 1982, 1983a,b,c; Borstnik
and Nielsen, 1999; Bullinaria, 1983, 1985, 1986, 1987; Graf, 1978; Jourjine, 1987;
Kähler, 1962; Talebaoui, 1993, 1994). K¨ahler (1962) considered an equation for
inhomogeneous differential forms that is equivalent to introducing a set of anti-
symmetric tensor fields of arbitrary rank. It implies the simultaneous consideration
of fields with different spins.

Kähler (1962) showed that the Dirac equation for particles with spin 1/2 can
be constructed from inhomogeneous differential forms. Now such fields are called
Dirac–Kähler fields. Using the language of differential forms, Dirac–K¨ahler’s
equation in four-dimensional space-time is given by

(d − δ +m)8 = 0 (1)

whered denotes the exterior derivative,δ = −?d? turns n-forms into (n− 1)-
form; ? is the Hodge operator which connects ann-form to a (4− n)-form so that
?2 = 1 andd2 = δ2 = 0. The Laplacian is given by

(d − δ)2 = −(dδ + δd) = ∂µ∂µ

So, the operator (d − δ) is the analog of the Dirac operatorγµ∂µ. The inhomoge-
neous differential form8 can be expanded as

8 = ϕ(x)+ ϕµ(x) dxµ + 1

2!
ϕµν(x) dxµ ∧ dxν + 1

3!
ϕµνρ(x)

× dxµ ∧ dxν ∧ dxρ + 1

4!
ϕµνρσ (x) dxµ ∧ dxν ∧ dxρ ∧ dxσ (2)

where∧ is the exterior product. The form8 includes scalarϕ(x), vectorϕµ(x),
and antisymmetric tensor fieldsϕµν(x), ϕµνρ(x), andϕµνρσ (x). The antisymmetric
tensors of the third and fourth ranksϕµνρ(x) andϕµνρσ (x) define a pseudovector
and pseudoscalar, respectively:

ϕ̃µ(x) = 1

3!
ενρσµ ϕνρσ (x) ϕ̃(x) = 1

4!
εµνρσϕµνρσ (x) (3)

whereεµνρσ is an antisymmetric tensor Levy-Civita. In fact, the Dirac–K¨ahler
equation (1) describes scalar, vector, pseudoscalar, and pseudovector fields. Some
authors (see e.g., Becher and Joos, 1982; Bullinaria, 1983, 1985, 1986, 1987)
showed that Eq. (1) is equivalent to four Dirac equations

(γµ∂µ +m)ψ (b)(x) = 0 b = 1, 2, 3, 4 (4)

The mapping between Eqs. (1) and (4) makes it possible to describe fermions
with spin 1/2 with the help of Eq. (1), i.e., boson fields. As we have already
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mentioned, this possibility is used in the lattice formulation of QCD and for de-
scribing fermions with spin−1/2.

It should be noted that Ivanenko and Landau (1928) considered an equation
for the set of antisymmetric tensor fields which is equivalent to the Dirac–K¨ahler
equation (1). Similar equations were discussed by Ericsson (1948), Bruno (1948),
Borgardt (1953a,b, 1956, 1957), and Feschbach and Nickols (1958) long before
the appearance of reports of K¨ahler (1962), and later, of Durand (1975), Kruglov
(1978, 1979), Bogush and Kruglov (1978), Bogushet al. (1978), Pestov (1978),
Ivanenkoet al. (1985), Solodukhin (1992), Obukhov and Solodukhin (1993), and
Gitman and Shelepin (2001). The author (Kruglov, 1978, 1979) found the internal
symmetry groupSO(4, 2) (or locally isomorphic groupSU(2, 2)) of the Dirac–
Kähler action and the corresponding conserving currents. The Lorentz covariance
of the Dirac–Kähler equation are also shown. The transformations of theSO(4, 2)
group mix the fields with different spins and do not commute with the Lorentz
transformations. Later Bogushet al.(1978), Ivanenkoet al.(1985), and Bullinaria
(1983) also paid attention to this symmetry. The transformations of the Lorentz and
internal symmetry groups discussed do not commute each other. So, parameters
of the group are tensors but not scalars as in (the more common) gauge theories.
This kind of symmetry is also different from supersymmetry where group param-
eters are spinors. The difference is that in our case the algebra of generators of the
symmetry is closed without adding the generators of the Poincar´e group. However
the indefinite metric should be introduced here. The localization of parameters of
the internal symmetry group leads to the gauge fields and field interactions.

The paper is organized as follows. In Section 2 we investigate the tensor
and matrix formulations of the Dirac–K¨ahler equation for massive and massless
fields. The tensor and spinor representations of the Lorentz group are analyzed.
All independent solutions of equations are found in the form of matrix-dyads. It is
shown in Section 3 that the internal symmetry group of the Dirac–K¨ahler tensor
fields is SO(4, 2). For the case of spinor fields we come to theU (4) group of
symmetry. In Section 4 within the framework of the quaternion approach, the six-
parameter internal-symmetry subgroup and the Lorentz covariance of the Dirac–
Kähler equation are considered.

The quantization of Dirac–K¨ahler’s fields is carried out in Section 5 by using
an indefinite metric. It is shown in Section 6 that in the field theory including
Dirac–Kähler fields it is possible to analyze supersymmetry groups with tensor and
spinor parameters without including coordinate transformations at the same time.
We show in Section 7 the possibility of constructing a gauge model of interacting
Dirac–Kähler fields where the gauge group is the noncompact groupSO(4, 2)
under consideration. Section 8 contains a conclusion. A method of computing the
traces of 16-dimensional Petiau–Duffin–Kemmer matrix products is considered
in Appendix A. Appendix B is devoted to the Lorentz transformations and the
quaternion algebra.
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We use the system of unitsh = c = 1,α = e2/4π = 1/137,e > 0, and
Euclidean metrics, so that the squared four-vector isv2

µ = v2+ v2
4 = v2− v2

0(v2 =
v2

1 + v2
2 + v2

3, v4 = iv0).

2. TENSOR AND MATRIX FORMULATIONS
OF DIRAC–K ÄHLER EQUATION

It is easy to show that Dirac–K¨ahler equation (1) with definitions (2) and (3)
is equivalent to the following tensor equations:

∂νϕµν − ∂µϕ +m2ϕµ = 0 ∂νϕ̃µν − ∂µϕ̃ +m2ϕ̃µ = 0 (5)

∂µϕµ − ϕ = 0 ∂µϕ̃µ − ϕ̃ = 0 (6)

ϕµν = ∂µϕν − ∂νϕµ − εµναβ∂αϕ̃β (7)

where

ϕ̃µν = 1

2
εµναβϕαβ (8)

is the dual tensor,εµναβ is an antisymmetric tensor Levy-Civita;ε1234= −i . It
should be noted that Eq. (7) is the most general representation for the antisymmetric
tensor of second rank in accordance with the Hodge theorem (Hodge, 1951)
(see also Cabibbo and Ferrari, 1962; Gamblin, 1968; Post, 1974).

If ϕ, ϕ̃, ϕµ, ϕ̃µ, andϕµν are complex values, Eqs. (5)–(7) describe the charged
vector fields. These equations are the tensor form of the Dirac–K¨ahler equation (1)
which was written in differential form (K¨ahler, 1962).

Now we show that in matrix form, Eqs. (5)–(7) can be represented as the
Dirac-like equation with (16× 16)-dimensional Dirac matrices. The projection
matrix-dyads defining all the 16 independent equation solutions will be constructed
(Bogush and Kruglov, 1978).

The matrix form facilitates the investigation of the general group of internal
symmetry. To obtain the matrix form for both the massive and massless cases,
generalized equations are introduced:

∂µψ̃µ +m2ψ̃0 = 0

∂νψ[µν] + ∂µψ0+m1ψµ = 0
(9)

∂νψµ − ∂µψν − eµναβ∂αψ̃β +m2ψ[µν] = 0

∂µψµ +m2ψ0 = 0

With m1 = m2 = m, ψ0 = −ϕ, ψµ = mϕµ, ψ[µν] = ϕµν , ψ̃µ = imϕ̃µ, ψ̃0 =
−i ϕ̃, eµναβ = i εµναβ(e1234= 1), we arrive at the Dirac–K¨ahler equations (5)–(7).
In the casem1 = 0, m2 6= 0 (wherem2 is the dimension parameter), Eqs. (9) are
the generalized Maxwell equations in the dual-symmetric form (Zaitsev, 1969).
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Let us introduce the 16-component wave function

9(x) = {ψA} A = 0,µ, [µν], µ̃, 0̃ (10)

whereψµ̃ ≡ ψ̃µ, ψ0̃ ≡ ψ̃0. It is convenient to introduce the matrixεA,B (Bogush
and Moroz, 1968) with dimension 16× 16; its elements consist of zeroes and only
one element is unity where rowA and columnB cross. Thus the multiplication
and matrix elements of these matrices are

εA,BεC,D = εA,DδBC (εA,B)CD = δACδBD (11)

where indicesA, B, C, D = 1, 2,. . . , 16. Using the elements of the entire algebra
εA,B, Eqs. (9) take the form{

∂ν

[
εµ,[µν] + ε[µν],µ + εν,0+ ε0,ν + εν̃,0̃+ ε0̃,ν̃

+ 1

2
eµνρω

(
εµ̃,[ρω] + ε[ρω], µ̃

)]
AB

+
[
m1(εµ,µ + εµ̃,µ̃)+m2

×
(
ε0,0+ 1

2
ε[µν],[µν] + ε0̃,0̃

)]
AB

}
9B(x) = 0 (12)

Let us introduce the projection matrices

P̄ = εµ,µ + εµ̃,µ̃ P = ε0,0+ 1

2
ε[µν],[µν] + ε0̃,0̃ (13)

with the propertiesPP̄ = P̄ P = 0, P + P̄ = I16; I16 is the unit 16× 16 matrix
and

0ν = εµ,[µν] + ε[µν],µ + εν,0+ ε0,ν + εν̃,0̃+ ε0̃,ν̃ + 1

2
eµνρω

(
εµ̃,[ρω] + ε[ρω], µ̃

)
(14)

Then Eq. (12) takes the form of the relativistic wave equation

(0ν∂ν +m1P̄ +m2P)9(x) = 0 (15)

which includes both the massive and massless cases. The 16× 16 matrix0ν can
be represented in the form

0ν = β (+)
ν + β (−)

ν β (+)
ν = β(1)

ν + β (0̃)
ν β (−)

ν = β(1̃)
ν + β (0)

ν

β (1)
ν = εµ,[µν] + ε[µν],µ β (1̃)

ν =
1

2
eµνρω

(
εµ̃,[ρω] + ε[ρω], µ̃

)
(16)

β (0̃)
ν = εν̃,0̃+ ε0̃,ν̃ β (0)

ν = εν,0+ ε0,ν

Matricesβ (1)
ν , β ˜(1)

ν andβ (0)
ν , β ˜(0)

ν realize 10-and 5-dimensional irreducible repre-
sentations of the Petiau–Duffin–Kemmer (Duffin, 1938; Kemmer, 1939; Petiau,
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1936) algebra

β(1,0)
µ β (1,0)

ν β (1,0)
α + β (1,0)

α β (1,0)
ν β (1,0)

µ = δµνβ (1,0)
α + δανβ (1,0)

µ (17)

andβ (+)
ν , β(−)

ν are 16-dimensional reducible representations of the Petiau–Duffin–
Kemmer algebra (Borgardt, 1953a,b, 1956, 1957). These matrices obey the Petiau–
Duffin–Kemmer algebra (17) and the matrix0ν is a 16× 16 Dirac matrix with the
algebra

0ν0µ + 0µ0ν = 2δµν (18)

For the massive case whenm1 = m2 = m, Eq. (15) becomes

(0ν∂ν +m)9(x) = 0 (19)

The 16-component wave equation in the form of the first-order equation (19)
was also studied by Durand (1975). Now we find all independent solutions of
Eq. (19) in the form of matrix-dyads. In the momentum space Eq. (19) becomes

−i p̂9p = εm9p (20)

wherep̂ = 0ν pν , and parameterε = ±1 corresponds to two values of the energy.
From the property of the Dirac matrices, Eq. (18), we find the minimal equation
for the operator̂p:

(i p̂+m)(i p̂−m) = 0 (21)

According to the general method (Fedorov, 1959, 1979), the projection op-
erator extracting the states with definite energy (for particle or antiparticle) is
given by

Mε = m− i ε p̂

2m
(22)

This operator has virtually the same form as in the Dirac theory of particles with
spin 1/2. This is because the algebra of the matrices (18) coincides with the
algebra of the Dirac matricesγµ. However, here we have the wave function9(x)
which is transformed in the tensor representation of the Lorentz group. It is also
possible to use Eq. (19) to describe spinor particles. In this case the wave function
9(x) will be a spinor representation of the Lorentz group and Eq. (19) is the
direct sum of four Dirac equations (see (4)). This case is used for fermions on the
lattice (Aratyn and Zimerman, 1986; Bankset al., 1982; Becher, 1981; Becher and
Joos, 1982; Edwardset al., 1988; Joos and Schaefer, 1987; Jourjine, 1987; Rabin,
1982).

Now we consider the bosonic case. The generators of the Lorentz group
representation in the 16-dimensional space of the wave functions9(x) are given
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by (see Borgardt, 1953a,b, 1956, 1957; Durand, 1975)

Jµν = 1

4
(0µ0ν − 0ν0µ + 0̄µ0̄ν − 0̄ν0̄µ) (23)

where the matrices̄0ν also obey the Dirac algebra (18) and have the form (see
(16))

0̄ν = β(+)
ν − β (−)

ν (24)

It may be verified that the matrices0µ and0̄ν commute each other, i.e.

[0µ, 0̄ν ] = 0 (25)

The spin projection operator here is given by

σp = − i

2|p|εabcpa Jbc = − i

4|p|εabcpa(0b0c + 0̄b0̄c) (26)

which satisfies the following equation

σp(σp − 1)(σp + 1)= 0 (27)

In accordance with Fedorov (1959, 1979) the corresponding projection operators
are given by

Ŝ(±1) = 1

2
σp(σp ± 1) Ŝ(0) = 1− σ 2

p (28)

OperatorsŜ(±1) correspond to the spin projectionssp = ±1 and Ŝ(0) to sp = 0.
It is easy to verify that the required commutation relations hold:Ŝ2

(±1) = Ŝ(±1),
Ŝ(±1)Ŝ(0) = 0, Ŝ2

(0) = Ŝ(0). The squared Pauli–Lubanski vectorσ 2 is given by

σ 2 =
(

1

2m
εµναβ pν Jαβ

)2

= 1

m2

(
J2
µν p2− Jµσ Jνσ pµpν

)
(29)

It may be verified that this operator obeys the minimal equation

σ 2(σ 2− 2)= 0 (30)

so that eigenvalues of the squared spin operatorσ 2 ares(s+ 1)= 0 ands(s+ 1)=
2. This confirms that the considered fields describe the superposition of two spins
s= 0 ands= 1. To separate these states we use the projection operators

S2
(0) = 1− σ

2

2
S2

(1) =
σ 2

2
(31)

having the propertiesS2
(0)S

2
(1) = 0, (S2

(0))
2 = S2

(0), (S2
(1))

2 = S2
(1), andS2

(0)+ S2
(1) =

1, where 1≡ I16 is the unit matrix in 16-dimensional space. In accordance with the
general properties of the projection operators, the matricesS2

(0) andS2
(1) acting on

the wave function extract pure states with spin 0 and 1, respectively. Here there is
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a doubling of the spin states of fields because we have scalarψ0, pseudoscalar̃ψ0,
vectorψµ, and pseudovector̃ψµ, fields. To separate these states it is necessary to
introduce additional projection operators. We use the following projection operator

M̄ ε̄ = m− i ε̄p̄

2m
(32)

which has the same structure as Eq. (22) but with the matrixp̄ = 0̄ν pν and an
additional quantum number ¯ε = ±1. Following the procedure (Fedorov, 1959,
1979), 16 independent solutions in the form of projection matrix-dyads are given by

1ε,±1,ε̄ = σ 2

2
· m− i ε p̂

2m
· m− i ε̄p̄

2m
· 1

2
σp(σp ± 1)= 9ε,±1,ε̄ · 9̄ε,±1,ε̄

1
(1)
ε,ε̄ =

σ 2

2
· m− i ε p̂

2m
· m− i ε̄p̄

2m
· (1− σ 2

p

) = 9ε,ε̄ · 9̄ε,ε̄ (33)

1
(0)
ε,ε̄ =

(
1− σ

2

2

)
· m− i ε p̂

2m
· m− i ε̄p̄

2m
· (1− σ 2

p

) = 9(0)
ε,ε̄ · 9̄ (0)

ε,ε̄

where operators1ε,±1,ε̄ and1(1)
ε,ε̄ correspond to states with spin 1 and spin projec-

tions±1 and 0, respectively, and the projection operator1
(0)
ε,ε̄ extracts spin 0. The

wave function9p(9ε,±1,ε̄ or9ε,ε̄ or9(0)
ε,ε̄) is the eigenvector of the equations

−i p̂9p = εm9p −i p̄9p = ε̄m9p
(34)

σp9p = sp9p σ 29p = s(s+ 1)9p

where the spin projections aresp = ±1, 0 and the spin iss= 1, 0. The Hermitian-
izing matrixη in 16-dimensional space is given by

η = 040̄4 (35)

This matrix obeys the equations

η0i = −0i η (i = 1, 2, 3) η04 = 04η

which guarantee the existence of a relativistically invariant bilinear form (Bogush
and Moroz, 1968; Fedorov, 1959)

9̄9 = 9+η9 (36)

where9̄p = 9+040̄4, and9+ is the Hermitian-conjugate wave function.
In the spinor case, when Eq. (12) is the direct sum of four Dirac equations,

generators of the Lorentz group in 16-dimensional space are

J(1/2)
µν =

1

4
(0µ0ν − 0ν0µ) (37)
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and the Hermitianizing matrix isη1/2 = 04. Using the unitary transformation we
can find the representation0′µ = I4⊗ γµ, whereI4 is a 4× 4 unit matrix,γµ are
the Dirac matrices, and⊗ means direct product. On this basis the matrices0̄µ
become0̄′µ = γµ ⊗ I4.

It is convenient also to use equations

(m− i ε p̂)(m− i ε̄p̄) = 2i p(±)
(
i p(±) − εm) (38)

σp = σ (+)
p = −

i

|p|εabcpaβ
(+)
b β (+)

c = σ (−)
p = −

i

|p|εabcpaβ
(−)
b β (−)

c (39)

where the sign (+) in Eq. (38) corresponds to the equalityε = ε̄, and sign (−)
to ε = −ε̄. With the help of Eqs. (38) and (39), the projection operators (33) are
rewritten as

1ε,±1,ε̄ = σ 2

8m2
i p(±)

(
i p(±) − εm)σ (±)

p

(
σ (±)

p ± 1
) = 9(±)

ε,±1 · 9̄ (±)
ε,±1

1
(1)
ε,ε̄ =

σ 2

4m2
i p(±)

(
i p(±) − εm)(1− σ (±)2

p

) = 9(±)
ε,ε̄ · 9̄ (±)

ε,ε̄ (40)

1
(0)
ε,ε̄ =

1

2m2

(
1− σ

2

2

)
i p(±)

(
i p(±) − εm)(1− σ (±)2

p

) = 9(±)
ε,ε̄ · 9̄ (±)

ε,ε̄

wherep(±) = pµβ (±)
µ . Projection matrix-dyads (40) extract solutions9(±)

p which
are the solutions of the equations

−i p(+)9 (+)
p =

1

2
(ε + ε̄)m9 (+)

p (41)

−i p(−)9 (−)
p =

1

2
(ε − ε̄)m9 (−)

p (42)

σ (±)
p 9 (±)

p = sp9
(±)
p σ 29 (±)

p = s(s+ 1)9 (±)
p (43)

For the bosonic case withε = ε̄, Eq. (41) describes the superposition of vector
and pseudoscalar fields, and Eq. (42) withε = −ε̄ describes the superposition of
pseudovector and scalar fields (see Borgardt, 1953a,b, 1956, 1957).

Let us investigate the case of massless fields; Eq. (15) withm1 = 0 becomes

(0ν∂ν +m2P)9(x) = 0 (44)

In the momentum space, the field function9k is the solution to the equation

B9k = 0 B = i k̂+m2P (45)

wherek̂ = 0µkµ, k2
µ = 0, and the matrixB obeys the minimal equation

B(B−m2) = 0 (46)
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The projection operator which extracts the solution to Eq. (45) is

α = m2− B

m2
(47)

with the equalityα2 = α required by a projection operator. The corresponding
spin operators are given by

σk = − i

k0
εabckaβ

(±)
b β (±)

c (48)

We have mentioned that the theory under consideration involves the doubling
of the spin states of particles, because there are vector and pseudovector fields.
To separate these states in the massless case we can use the following projection
operators

3ε = 1

2
(1+ ε0̄5)

where0̄5 = 0̄10̄20̄30̄4 andε = ±1. The matrix3ε commutes with the matrixB of
Eq. (45) and with spin operators (48), and possesses the required relation32

ε = 3ε .
As a result, the projection matrix-dyads, corresponding to the generalized Maxwell
field after extracting spin 0 and spin projections±1, take the form

5(0)
ε =

1

m2

(
1− σ

2

2

)
(m2− B)3ε = 9(0)

ε · 9̄ (0)
ε

(49)
5(±1)
ε = 1

2m2
σk(σk ± 1)(m2− B)3ε = 9(±)

ε · 9̄ (±)
ε

Let us consider the case of spinor particles when the wave function9(x)
realizes the spinor representation of the Lorentz group with the generators (37) and
Hermitianizing matrixη1/2 = 04. In this case the wave function9(x) represents
the direct sum of four bispinors and the variablesψ0, ψµ, ψ[µν] , ψ̃µ, and ψ̃0,
which comprise9(x) (10), are connected with components of spinors. Under the
Lorentz transformations with generators (37) these variables do not transform as
tensors. Thus the equations for the eigenvalues and the spin operator are

−i p̂9 (1/2)
p = εm9(1/2)

p σ (1/2)
p 9(1/2)

p = sp9
(1/2)
p

(50)
σ (1/2)

p = − i

4|p|εabcpa0b0c

wheresp = ±1/2. As there is a degeneracy of states due to the 16-dimensionality
we should use additional equations with the corresponding quantum numbers.
Taking into account Eq. (25) we can use the following additional equations to
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separate states of spinor fields:

−i p̄9(1/2)
p = ε̄m9 (1/2)

p σ̄ (1/2)
p 9 (1/2)

p = s̄p9
(1/2)
p

(51)
σ̄ (1/2)

p = − i

4|p|εabcpa0̄b0̄c

with s̄p = ±1/2. We can treat the additional quantum numbers̄p as the “internal
spin” because matrices (24) obey the Dirac algebra

0̄ν0̄µ + 0̄µ0̄ν = 2δµν (52)

Thus it is easy to find all independent solutions of Eqs. (50) and (51) in the form
of matrix-dyads:

1ε,ε̄,sp,s̄p =
m− i ε p̂

2m
· m− i ε̄p̄

2m
·
(

1

2
+ 2spσ

(1/2)
p

)(
1

2
+ 2s̄pσ̄

(1/2)
p

)
= 9ε,ε̄,sp,s̄p · 9̄ε,ε̄,sp,s̄p (53)

where9̄ε,ε̄,sp,s̄p = 9+ε,ε̄,sp,s̄p
04, ε = ±1, sp = ±1/2, and we introduce two addi-

tional internal quantum numbers ¯ε = ±1 ands̄p = ±1/2. Durand (1975) also used
a similar construction for the solutions of the field equations but without the dyad
representation (53). The dyad representation is essential as all quantum electrody-
namic calculations can only be done using matrix-dyads (Fedorov, 1959, 1979).
The necessary method of computing the traces of 16-dimensional matrix products
is considered in Appendix A.

3. THE LORENTZ COVARIANCE AND SYMMETRY GROUP O(4.2)
OF CHARGED VECTOR FIELDS

Let us consider the Lorentz group transformations of coordinates

x′µ = Lµνx
′
ν (54)

where the Lorentz matrixL = {Lµν} obeys the equation

LµαLνα = δµν (55)

Under the Lorentz coordinates transformations (54), the wave function (10)
transforms as follows

9 ′(x′) = T9(x) (56)

where 16× 16 matrixT realizes the tensor or spinor representations of the Lorentz
group. Then the wave equation of the first order (19) is converted into

(0µ∂
′
µ +m)9 ′(x′) = (0µLµν∂ν +m)T9(x) = 0 (57)
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We took into account that at the Lorentz transformations (54) the derivatives
∂µ become∂ ′µ = Lµν∂ν . The Lorentz covariance of the Dirac–K¨ahler equation (57)
occurs if the equation

0µT Lµν = T0ν (58)

is valid. The infinitesimal Lorentz transformations (54) are given by the matrix

Lµν = δµν + εµν εµν = −ενµ (59)

where six parametersεµν define three rotations and boosts. At the same time the
matrix T at the infinitesimal transformations (59) can be written as

T = I16+ 1

2
εµν Jµν (60)

whereI16 and Jµν are the unit matrix and generators of the Lorentz group in 16-
dimensional space, respectively. With the help of Eqs. (59) and (60) and using
the smallness of parametersεµν we arrive from Eq. (58) at (see Ahieser and
Berestetskii, 1969)

0µJαν − Jαν0µ = δαµ0ν − δνµ0α (61)

It is easy to verify that generators (23) for bosonic fields and generations (37)
for fermionic fields obey Eq. (61). This means that Eq. (19) is covariant 16-
dimensional Dirac-like wave equation, which can describe bosons as fermions.
For the bosonic case the wave function9(x) is given by Eq. (10) but for the
fermion case it is a direct sum of four bispinors (see Eq. (4)). At the finite Lorentz
transformations the wave function transforms according to Eq. (56) with the matrix

T = exp

(
1

2
εµν Jµν

)
(62)

We will show that the groupSO(4, 2) is the symmetry group of the Dirac–
Kähler charged vector fields. This will be obtained using the Dirac matrix alge-
bra and the minimality of the electromagnetic interaction (Bogushet al., 1978;
Kruglov, 1979).

The interaction with electromagnetic field is introduced by the substitution
∂µ→ D(−)

µ = ∂µ − ieAµ, whereAµ is the vector potential of the electromagnetic
field. Consider the Lagrangian

L = 1

2

[
9̄(x)

(
0µ
−−→
D(−)
µ +m

)
9(x)− 9̄(x)

(
0µ
←−−
D(+)
µ −m

)
9(x)

]
− 1

4
Fµν

(63)

where D(+)
µ = ∂µ + ieAµ, 9̄ = 9+040̄4, and the arrows aboveD(±)

µ show the
direction in which these operators act;Fµν = ∂µAν − ∂νAµ is the strength tensor
of the electromagnetic field. From the variation of the Lagrangian (63) on wave
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functions9 and9̄, we find equations for Dirac–K¨ahler vector fields in the external
electromagnetic fields(

0µD(−)
µ +m

)
9(x) = 0 9̄(x)

(
0µ
←−−
D(+)
µ −m

)
= 0 (64)

From the variation of Eq. (63) on the vector-potentialAµ we get Maxwell equa-
tions, in which the source is the electromagnetic currentJel

µ = ie9̄0µ9.
Let us consider the set of 16 linear independent matrices:

I = I16 Iµ = 0̄µ Iµν = 1

4
0̄[µ0̄ν]

(65)
Ĩ = 0̄5 = 0̄10̄20̄30̄4 Ĩ µ = 0̄50̄µ

They commute with the operators (0µD(−)
µ +m), (0µ

←−−
D(+)
µ −m) of Eqs. (64) and

generate the algebra of the symmetry of Eqs. (64). The algebra of the genera-
tors (65) is isomorphic to the Clifford algebra with the commutation relations

[ Iαβ , Iµν ] = δβµ Iαν + δαν Iβµ − δβν Iαµ − δαµ Iβν

[ Iµ, Iαβ ] = δµα Iβ − δµβ Iα

[ Ĩµ, Iαβ ] = δµα Ĩβ − δµβ Ĩα (66)

[ Ĩ µ, Iν ] = 2Ĩ δµν [ Iµ, Iν ] = 4Iµν [ Ĩ µ, Ĩ ν ] = −4Iµν

[ Iµ, Ĩ ] = −2Ĩ µ [ Ĩ µ, Ĩ ] = −2Iµ [ Iαβ , Ĩ ] = 0

Let us introduce the anti-Hermitian generators (Stepanovskii, 1966):

I0 = i I 16 I56 = −I65 = i

2
Ĩ

(67)
I6µ = −Iµ6 = 1

2
Ĩ µ I5µ = −Iµ5 = i

2
Iµ

With the help of Eqs. (67), the commutation relations (66) take the form

[ I AB, IC D] = δBCI AD + δADI BC − δACI B D − δB DI AC
(68)

[ I AB, I0] = 0 A, B, C, D = 1, 2,. . . , 6

The algebra (68) corresponds with the direct product of the group of 6-
dimensional rotationSO(6) and the unitary groupU (1) (for real group param-
eters). This group is isomorphic to theU (4) group. The transformations of the
corresponding group are given by

9 ′(x) = U9(x)
(69)

U = exp(I α + Iµβµ + Iµνωµν + Ĩµδµ + Ĩ ξ )
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whereα, βµ, ωµν , δµ, andξ are the group parameters; if these parameters are com-
plex, we have theGL(4, c) group. For the neutral Dirac–K¨ahler fields, the transfor-
mations (60) should leave real components as real components with the conditions
α∗ = α, β∗m = βm, β∗4 = −β4, ω∗mn = ωmn, ω∗m4 = −ωm4, δ∗m = −δm, δ∗4 = δ4,
andξ ∗ = −ξ corresponding to theSO(3, 3)⊗GL(1, R) group. Such a contrac-
tion of theGL(4, c) group is a consequence of charged fields being described by
complex fields having more degrees of freedom.

The requirement that the Lagrangian (63) is invariant under the transfor-
mations (69) leads to the constraintsα∗ = −α, β∗m = βm, β∗4 = −β4, ω∗mn = ωmn,
ω∗m4 = −ωm4, δ∗m = δm, δ∗4 = −δ4, andξ ∗ = ξ which correspond to contraction
of theSO(4, 2)⊗U (1) group with 16 parameters (Bogushet al., 1978; Kruglov,
1979). This occurs only for charged Dirac–K¨ahler fields. The subgroupU (1) is the
known group of gauge transformations9 ′(x) = exp(I α)9(x)(α∗ = −α), which
gives the conservation law of four current. For neutral fields, the group leaving
the Lagrangian invariant under the transformation isSO(3, 2) with generators̃Iµ
andIµν and corresponding parametersω∗mn = ωmn, ω∗m4 = −ωm4, δ∗m = −δm, and
δ∗4 = δ4. The generatorsIµν (see (66)) with parametersω∗mn = ωmn andω∗m4 =
−ωm4 correspond to the subgroupSO(3, 1). The one-parameter subgroup of the
Larmor transformations with the generatorĨ was mentioned in Borgardt (1953a,b,
1956, 1957). Only generators of Larmor and gauge transformations commute with
the Lorentz group generators (23). This means that in the general case, the trans-
formations of the group with internal symmetrySO(4, 2) do not commute with
the Lorentz transformations. The transformations of the Lorentz group realize
the operation of internal automorphism with respect to the elements of the group
considered. As a consequence, the parameters of this group are tensors. This is
the main difference between the group being considered and the usual groups of
internal symmetry where parameters are scalars.

As the Lagrangian (63) is invariant under theSO(4, 2)⊗U (1) group we find
in accordance with Noether’s theorem that the variation of the action is

δS=
∫

d4x∂µ(9̄(x)0µδ9(x)− δ9̄(x)0µ9(x)) = 0 (70)

As parameters of transformations (69) are independent we find from (70) the
conservation tensors:

Jµ = i 9̄(x)0µ9(x) Kµ = 9̄(x)0µ0̄59(x) Rµα = 9̄(x)0µ0̄50̄α9(x)

Cµα = 9̄(x)0µ0̄α9(x) 2µ[αβ] = 9̄(x)0µ0̄[α0̄β]9(x) (71)

These conservation currents were also constructed in Borgardt (1953a,b, 1956,
1957) without consideration of the corresponding internal symmetry. Conservation
of the currents (71) follows from the symmetry-groupSO(4, 2)⊗U (1) of the
Lagrangian (63). For the neutral Dirac–K¨ahler fields, there is a conservation of ten-
sorsCµα and2µ[αβ] corresponding to the symmetry-subgroupSO(3, 2). Using the
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matrices0µ, 0̄µ (16), and (24) and wave function (10)9(x), 9̄(x) = 9+(x)040̄4,
it is easy to verify that in this case (of neutral fields), the currentsJµ, Kµ, andRµα
are identically zero.

For the spinor case with the generators (37), the Lagrangian (63) with the con-
jugate function9̄(x) = 9+(x)04 is invariant under theU (4)-group transformation
(69) with the parameter constraintsα∗ = −α, β∗µ = −βµ, ω∗µν = ωµν , δ∗µ = δµ,
and ξ ∗ = −ξ . In this case the transformation (69) commutes with the Lorentz
transformations (see (37)). The existence of the additional quantum numberss̄p

andε̄ is connected here with the presence of the groupSU(4). The subgroupU(1)
with the parameterα is the well-known group of gauge transformations giving the
conservation of the electric currentJµ = i 9̄(x)0µ9(x).

4. QUATERNION FORM OF DIRAC–K ÄHLER’S FIELDS
AND SYMMETRY

Dirac–Kähler equations (5)–(7) may be written in quaternion form (Kruglov
et al., 1978a; Kruglov and Strazhev, 1978). Within the framework of the quater-
nion approach, the six-parameter internal-symmetry subgroup of the Dirac–K¨ahler
equation is considered. It is shown that the Lorentz group is the automorphism
group of the group under consideration. The possibility is investigated to reproduce
the potentials and field transformations induced by the coordinate transformation
in the complex space-time (Kruglovet al., 1978b).

Let us introduce the following biquaternions (see Appendix B)

∇ = eµ∂µ F = Fµeµ G = Gµeµ

Fm = Hm − i Em F4 = −ϕ − i ϕ̃ Gµ = ϕµ + i ϕ̃µ (72)

Hm = 1

2
εmnkϕnk Em = iϕm4

Using the algebra of quaternions (see Appendix B) we represent Eqs. (5)–
(7) as

∇F +m2G = 0 F = −∇̄G (73)

where∇̄ = ēµ∂µ; ēµ = (e4,−em) are the conjugated quaternion elements. The
Lagrangian (63) with the help of the basis elements of the quaternion algebra takes
the form

L = −1

2
(F F̄ +m2GḠ+ F∗ F̄∗ +m2G∗Ḡ∗) (74)

Equations (73) preserve their form under the following transformations of the
field variables:

G→ G′ = GD F→ F ′ = FD (75)
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In the general case, transformations (75) define theSL(2, c) group as the
quaternion algebra isomorphic to the algebra of Pauli’s matrices (see Appendix B).
The Lagrangian (74) is invariant under the transformations (75) if the biquaternion
D satisfies the equalityDD̄ = 1. This condition defines a six-parameter group of
internal symmetrySO(3, 1), which is a subgroup ofSO(4, 2) investigated in the
previous section. We can use the following parametrization of the biquaternionD:

D = expn (76)

wheren is the vector biquaternion with six parameters. The complex quaternion
(76) obeys the equationDD̄ = 1. The finite transformations (75) with the biquater-
nion D (76) define subgroupsSU(1, 1) andSU(2) for the real and complex param-
eterni , respectively. It is easy to verify that transformations (75) correspond to
(69) atα = βµ = δµ = ξ = 0,ω[m4] = −ω[4m] = Im nm, andω[mn] = εmnkRenk.

Under the transformations of the Lorentz group, the quaternionsG, F, ∇, and
∇̄ are changed as follows:

GL = L̄∗GL FL = L̄FL
(77)

∇L = L̄∗∇L ∇̄L = L̄∇̄L∗

with the conditionL L̄ = L̄ L = 1. It is obvious that the field equations (73) are
invariant under the Lorentz transformations (77) which guarantee the relativistic
invariance. Now let us consider the transformations of the Lorentz groupL and
D-transformations (75). We have

GDL = L̄∗GDL GLD = L̄∗GLD
(78)

F DL = L̄FDL FLD = L̄FLD

It follows from Eqs. (78) that the Lorentz group does not commute with
the group of the internal symmetry (75) asGDL 6= GL D, F DL 6= F L D. Under the
Lorentz group transformations, the biquaternionD transforms as

DL = L̄DL (79)

It is seen from Eq. (79) that parameters of the group (75) are transformed
under the tensor representation of the Lorentz group. Equation (79) also denotes
that the Lorentz group is the automorphism group of the group under consideration.

Let us consider the complex four-dimensional space where coordinates
are complex potentialsGµ = ϕµ + i ϕ̃µ. The group of transformations of
four-dimensional rotations in this space is homomorphic to the groupSO(4, c); it
leaves the quadratic formG2

µ invariant. We suppose that the space-time coordi-
natesxµ are not transformed here. The transformations of this group are given by
(Appendix B)

G→ G′ = SGR (80)
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whereSS̄= RR̄= 1. Because coordinates are not changed under this transforma-
tion, the quaternions∇ and∇̄ are also not changed. Transformation (80) leaves
Eqs. (73) invariant. Indeed,

F ′ = −∇̄SGR
(81)

∇F ′ +m2G′ = ∇(−∇̄SGR+m2SGR) = S(∇F +m2G)R= 0

This extracted three subgroupsSL(2, c) from SO(4, c):

S= 1 RR̄= 1 G′ = GR F′ = FR (82)

R = 1 SS̄= 1 G′ = SG F′ = −∇̄SG (83)

S= R̄∗ RR̄= 1 G′ = R̄∗GR F′ = −∇̄R̄∗GR (84)

It is obvious that group (82) coincides with group (75).
Now we discuss the possibility of inducing the transformations (75) by the

Lorentz transformations in the complex space-time (see Appendix B). Transfor-
mations of the complex coordinatesz′ = LzRof the complex Lorentz groupSO(4,
c) induce the following transformations of biquaternions∇, ∇̄, G, andF :

∇′ = L∇R ∇̄′ = R̄∇̄ L̄
(85)

G′ = LGR F′ = R̄FR

with the constraintsRR̄= 1 andL L̄ = 1. At the transition to the complex space-
time, transformations of the complex Lorentz groupSO(4, c) and induced trans-
formations of biquaternions∇, ∇̄, G, andF in Eq. (85) retain the invariant form
of Eqs. (73). In the case of the ordinary Lorentz groupSO(3, 1), we should set
L = R̄∗. The transformations of the group of the internal symmetry of potentials
G, Eq. (75), and the transformations ofG, Eq. (85), from the complex Lorentz
group atL = 1 have the same form; i.e. they are not different. But transformations
of the field biquaternionF in Eqs. (75) and (85) are different. Therefore the trans-
formations of the potentialsϕµ andϕ̃µ can be induced by the transformations of
the complex Lorentz groupSO(4, c) but the fieldsϕµν , ϕ, andϕ̃ cannot.

The possibility of considering transformations (75) for the field variables is
based on the fact thatF4 = −ϕ − i ϕ̃ 6= 0 but transformations (85) are valid also
for F4 = 0, i.e. for equations without additional scalar and pseudoscalar fields.
At ϕ = ϕ̃ = 0 andϕ̃µ = 0, Eqs. (73) represent the quaternion form of the Proca
equations. For them the transformations (75) are not possible.

It should be noted that the transition to complex space-time is used in the
investigation of some general problems of quantum field theory; e.g. the solution
of some specific problems in electrodynamics (Newman, 1973; Weingarten, 1973).
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5. QUANTIZATION OF FIELDS

The quantization of Dirac–K¨ahler’s fields will be carried out by using an indef-
inite metric. It will be shown that the renormalization procedure is carried out in the
same manner as in quantum electrodynamics (Kruglov and Strazhev, 1982, 1984).

The Lagrangian of charged Dirac–K¨ahler fields (63) within four divergences
can be written (when electromagnetic fields are absent) as

L = −9̄(x)(0µ∂µ +m)9(x) (86)

where9̄(x) = 9(x)+040̄4 corresponds to the tensor representation of the Lorentz
group, where the 16-component wave function9 describes scalar, pseudoscalar,
vector, and pseudovector fields. In the case of spinor representation of the Lorentz
group,9 is the direct sum of four Dirac bispinors,̄9(x) = 9(x)+04, and the
quantizing procedure is similar to the Dirac theory.

Now we will consider the case of the boson fields. Using the canonical quan-
tization, one arrives at the commutators

[9M (x), 9̄N(x′)]t=t ′ = (04)MNδ(x− x′) (87)

whereM , N= 1, 2,. . . , 16. It follows from (87) that it is necessary to introduce the
indefinite metric, as for finite-dimensional equations (with the diagonal matrix04)
which describe fields with integer spins; only fields obeying the Petiau–Duffin–
Kemmer equation have positive energy (Gel’fandet al., 1963). With the help of
Eqs. (10) and (14) we get the following commutation relations for the tensor fields:

[ϕ(x), ϕ∗0(x′)]t=t ′ = i δ(x− x′) [ϕ̃(x), ϕ̃∗0(x′)]t=t ′ = −i δ(x− x′)
(88)

[ϕ̃k(x), ϕ∗mn(x
′)]t=t ′ = i εkmn(x− x′) [ϕk(x), ϕ∗n4(x′)]t=t ′ = δknδ(x− x′)

plus complex conjugated relations. In the momentum space, the equation of motion
of fields with spins 0 and 1, takes the form

(m± i p̂)9±(p) = 0 (89)

wherep̂ = pµ0µ and9±(p) are positive (9+(p)) and negative (9−(p)) frequency
parts of the wave function corresponding to positivep0 > 0 and negativep0 < 0
energies of particles, respectively. For each value of the energy, there are eight
solutions with definite spin, spin projection, and addition quantum number. Wave
functions9±(p) and9̄±(p) can be expanded in spin states as follows

9±M (p) = a∓s (p)vs,∓
M (p) 9̄±M (p) = a∗∓s (p)v∗s,∓

N (p)(040̄4)NM (90)

where indexs= 0,m, ñ, 0̃ (m, n = 1, 2, 3); operatora∗+s (p) is the creation operator
of a particle in the scalar state (s= 0), pseudoscalar state (s= 0̃), vector state
(s= m), and pseudovector state (s= ñ); anda−s (p) is the annihilation operator of
a particle. The normalization conditions for solutions (90) are different from the
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Dirac bispinors case, and are given by

v∗s,±
N (p)(0̄4)NMvr,∓

M (p) = ±εsδsr (91)

v̄s,±(p)vr,∓(p) = εsδsr
m

p0
(v̄s,±(p) = v∗s,±(p)040̄4) (92)

v∗s,±(p)0̄4vr,±(−p) = 0 (vs,±(p))∗ = v∗s,∓(p) (93)

andεs = 1 ats= 0̃, m, andεs = −1 ats= 0, ñ. We use here the normalization on
the charge and in the right hand sides of Eqs. (91) and (92) there is no summation on
indicess. The summation formula on indicess corresponding to the normalization
conditions, has the form∑

s

εsv
s,±
M (p)v̄s,∓

N (p) =
(

m± i p̂

2p0

)
M N

(94)

If we take the trace of the matrix (94) and compare it with the expression (92)
summed over all statess, we will get the equality. Multiplying Eq. (94) into the
matrix04, and then calculating the trace of both sides of the matrix equality, we
arrive at Eq. (91).

The appearance of the coefficientεs = ±1 in the right hand side of Eq. (92)
reflects the fact that the energy of vector and pseudoscalar states is positive, and
the energy of pseudovector and scalar states is negative. We can also come to this
conclusion using the expression for the energy–momentum tensor

Tµν = −9̄(x)0µ∂ν9(x) (95)

which follows from the Lagrangian (86). Taking into account the expansions for
wave functions

9(x) = (2π )−3/2
∫

[9+(p)eipx +9−(p)e−i px] d3 p

(96)

9̄(x) = (2π )−3/2
∫

[9̄+(p)eipx + 9̄−(p)e−i px] d3 p

found from Eq. (95), the energy–momentum vector

Pµ = −i
∫
9̄(x)04∂µ9(x) d3x (97)

and Eqs. (90)–(93), we arrive at the following expression

Pµ =
∫

pµ
∑

s

εs(a
∗+
s (p)a−s (p)+ a∗−s (p)a+s (p)) d3 p (98)

To have the positive energy in accordance with Eq. (98), we should use the
following commutation relations for creation and annihilation operators:

[a∗−s (p), a+r (p)] = [a−s (p), a∗+r (p)] = εsδsrδ(p− p′) (99)
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With the help of Eqs. (90), (94), and (99) we find

[9−M (x), 9̄+N (y)] = −(2π )−3
∫

(m+ i p̂)M N

2p0
e−i p(x−y) d3 p

=
(
0µ

∂

∂xµ
−m

)
M N

1−(x − y) (100)

[9+M (x), 9̄−N (y)] = (2π )−3
∫

(m− i p̂)M N

2p0
eip(x−y) d3 p

= −
(
0µ

∂

∂xµ
−m

)
M N

1+(x − y) (101)

It follows from Eqs. (100) and (101) (by taking into account the definition
of the Pauli–Jordan function (Ahieser and Berestetskii, 1969; Bogolyubov and
Shirkov, 1980)10 = i (1+(x)−1−(x))) that

[9(x), 9̄(y)] = S(x − y) S(x − y) = S+(x − y)+ S−(x − y)
(102)

S±(x − y) = ∓
(
0µ

∂

∂xµ
−m

)
1±(x − y)

where the functionS(x − y) satisfies the following equations(
0µ

∂

∂xµ
+m

)
S(x − y) = i

(
∂2

∂x2
µ

−m2

)
10(x − y) = 0 (103)

From Eqs. (102), att = t ′, and using Eqs. (100) and (101) we arrive at the
commutator (87). With the help of the relationships (102), we can find the chrono-
logical pairing of the operators:

〈T9M (x)9̄N(y)〉0 = Sc
M N(x − y)

= 2(x0− y0)S+M N(x − y)−2(y0− x0)S−M N(x − y)

= i

(2π )4

∫
(i p̂−m)M N

p2+m2− i ε
eip(x−y) d4 p (104)

which has formally the same form as in quantum electrodynamics (QED). Here
2(x) is the well-known theta function (Bogolyubov and Shirkov, 1980) andx0 is
the time.

It is seen from Eq. (104) that the Feynman rules for particles with spins 0
and 1 interacting with the electromagnetic field, eventually are the same as in
QED. We should not, however, here use the QED factorη = (−1)l , wherel is the
number of loops in the diagram due to different statistics (Bogolyubov and Shirkov,
1980). The difference is in the number of spin states of the charged particle, and
in the dimension of matrices0µ. As the propagator (104) formally coincides
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with the electron propagator of QED, so all divergences can be cancelled by the
standard procedure, i.e., we have here a renormalizable theory. All matrix elements
of quantum processes describing the interaction of particles with multispin 0, 1
coincide eventually with the corresponding elements in QED. The difference is in
the density matrix9 · 9̄ which we found in Section 2.

The commutation relations (99) with sign (−) in the right hand side (atεs =
−1) require the introduction of the indefinite metric. The space of states is divided
into two substates:Hp andHn with positive (Hp) and negative (Hn) square norm.
The vector and pseudoscalar states correspond to a positive square norm, and
pseudovector and scalar states to a negative square norm. The total space is the
direct sum of the two subspacesHp andHn.

6. SUPERSYMMETRY OF DIRAC–K ÄHLER’S FIELDS

For the Dirac–Kähler fields, it will be shown that in field theory it is possible to
analyze transformation groups with tensor and spinor parameters without including
coordinate transformations at the same time (Kruglov and Strazhev, 1981a).

A graduated Lie algebra must be absolutely related to transformations involv-
ing space-time coordinates (Taylor, 1979), but it seems perfectly obvious that this
is always the case if we are dealing with transformations whose generators are of
neither a tensor nor spinor nature (see e.g., Ogievetskii and Mezinchesku, 1976;
Konopel’chenko, 1977).

A theory of Dirac–Kähler’s fields, however, raises the possibility of construct-
ing a transformation group with tensor and spinor generators which does not at the
same time include coordinate transformations.

Let us consider the field equations(
γµ∂µ + 1

2
(m1+m2)

)
G(x)+ 1

2
(m2−m1)γ5G(x)γ5 = 0 (105)

whereγµ are the Dirac matrices, and the matrixG(x) is

G(x) = ψ0(x)I4− ψµ(x)γµ + 1

2
ψ[µν] (x)γ[µγν] + i ψ̃µ(x)γµγ5− i ψ̃0(x)γ5

(106)
The quantitiesψ0(x), ψµ(x), ψ[µν] (x), ψ̃µ(x), and ψ̃0(x) in Eq. (106) are,

respectively, a scalar, a vector, an antisymmetric tensor, a pseudovector, and a
pseudoscalar; under the Lorentz group,G(x) transforms as follows:

G(x)→ GL (x) = SG(x)S−1 S= exp

(
1

4
εµνγ[µγν]

)
(107)

whereεµν are the Lorentz group parameters. Multiplying Eq. (105) successively
by the Clifford-algebra elementsγA: i I 4, γµ, (1/2)γ[µγν] , γµγ5, andγ5, and taking
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the trace, we find the tensor equations which coincide with Eqs. (9) including the
massive and massless cases. The case of a massless field corresponds to the choice
m1 = 0, while a massive field (atm1 = m2 = m) is described by an equation of
the type

(γµ∂µ +m)G(x) = 0 (108)

The matrix equation (108) is equivalent to the massive Dirac–K¨ahler equa-
tion. It is obvious that Eq. (108) describes spinor particles when the 4× 4 matrix
G(x) represents four bispinors, and that it describes scalar, vector, antisymmetric
tensor, pseudovector, and pseudoscalar fields whenG(x) is expanded by (106).
For the spinor case, however,G(x) transforms as follows (in this case we use the
index 1/2):

G1/2(x)→ GL
1/2(x) = SG1/2(x) S= exp

(
1

4
εµνγ[µγν]

)
(109)

The Lagrangian corresponding to Eq. (108) is

L = −1

2
tr [Ḡ(x)γµ∂µG(x)− Ḡ(x)γµ

←
∂ µG(x)+ 2mḠ(x)G(x)] (110)

whereḠ(x) = γ4G(x)γ4, the arrow specifies the direction in which the differential
operator acts, and tr means the trace of matrices. After taking the trace in Eq. (110),
we arrive at the Lagrangian which is equivalent to Eq. (86).

Equation (108) is invariant under the following transformations of the matrix
quantityG(x):

G(x)→ G′(x) = G(x)D (111)

The relativistic invariance of Eq. (108) is retained if the matrixD transforms
under the Lorentz group as

D(x)→ DL (x) = SDS−1 (112)

i.e., if the generators of the transformation group (111) are of a tensor nature with
respect to the Lorentz group. In the spinor case, all parameters of transformation
(111) are scalars. Therefore the Lorentz transformations (109) and the transforma-
tions of the internal symmetry (111) commute each other. If we make the Lorentz
(109) and symmetry (111) transformations for the case of spin 1/2, one gets

G1/2(x)→ GL′
1/2(x) = SG1/2(x)D (113)

The commutation of these two groups of transformations is obvious from Eq. (113).
If we put D = S−1 in Eq. (113) we arrive at the law of the transformation of the
tensor fields (107). That is why it is possible to describe the spinor particles with
spin 1/2 by the tensor fields using the expansion (106). The same conclusion
follows from the formalism of Section 2.
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The requirement that the Lagrangian (110) be invariant under transformations
(111) leads to the condition

DD̄ = 1 D̄(x) = γ4D+γ4 (114)

Writing D in the form

D = exp

(
iα I4+ βµγµ + 1

2
Äµνγ[µγν] + δµγµγ5+ ργ5

)
(115)

wherei I 4, γµ, 1
2γ[µγν] , γµγ5, andγ5 are the generators of the groupGL(4, C), we

find from condition (114) a restriction on the parametersα∗ = α, β∗m = βm, β∗4 =
−β4,Ä∗mn= Ämn,Ä∗m4 = −Äm4, δ∗m = δm, δ∗4 = −δ4, andρ∗ = ρ , in accordance
with a singling out of theSO(4, 2)⊗U (1) subgroup (or locally isomorphic to
U (2, 2)). The subgroupU (1) corresponds to the gauge transformations that con-
serve electric current. So the symmetry group of Eq. (108) isGL(4, C) and the
corresponding Lagrangian isSO(4, 2)⊗U (1) for a case of tensor fields. In the
case of spinor fields, the symmetry group isU (4), in accordance with conclusions
of Section 3.

From the invariance of the Lagrangian (110) under transformations (111)
((114) is taken into account) we find conservation laws for quantities of the type

2µA = 1

2
tr (γµG(x)γAḠ(x)− γµG(x)γ4γ

+
A γ4Ḡ(x)) (116)

whereγA = i I 4 andγµ, (1/2)γ[µγν] , γµγ5, γ5, andγ+A are the complex conjugated
Clifford-algebra elements. The conservation currents (116) were found in Section 3
in another formalism. From the physical standpoint, the appearance of this symme-
try results from a mass degeneracy of the spin states of the particle which are mixed
by transformations (111). The symmetry is preserved in a nonlinear generalization
of Eq. (108) (equations of the Heisenberg type):

(γµ∂µ +m)G(x)+ lG(x)Ḡ(x)G(x) = 0 (117)

wherel is the coupling constant.
The matrixG(x) corresponds to a second-rank bispinorGβ

α . If the bispinor
satisfies the Dirac equations with respect to each index simultaneously, we find
a system of Bargmann–Wigner equations (Novozhilov, 1975) which describe a
particle with spin 0 and system of particles with spin 1.

By jointly analyzing Eqs. (108) and the Dirac equation

(γµ∂µ +m)9(x) = 0 (118)

which is invariant under phase transformations of wave function9(x) [9(x)→
9 ′(x) = exp(i θ )9(x)], we can construct a symmetry group which incorporates
these phase transformations and transformation (111) as a subgroup. The systems
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(108) and (118) are invariant under the following transformations:

G′(x) = G(x)D +9(x) · ζ̄
(119)

9 ′(x) = 9(x)λ+ G(x)ξ

where 9(x) · ζ̄ = (9α(x) · ζ̄ β) is the matrix-dyad, ζ̄ and ξ are bispinor-
parameters, andλ is the complex number parameter. Transformations (119) form
a group with the following parameter composition law:

D′′ = D′D + ξ ′ · ζ̄ ζ̄ ′′ = λ′ζ̄ + ζ̄ ′D
(120)

λ′′ = λ′λ+ ζ̄ ′ξ ξ ′′ = ξ ′λ+ D′ξ

Under the Lorentz group, the parametersζ̄ and ξ transform as bispinors
9̄ and9, respectively, and are constant quantities, independent of the space-time
coordinates. In order to preserve the relationship between the spin and the statistics,
we must require that the parametersξ andζ anticommute:{ξα, ξβ} = {ζ̄ α, ζ̄ β} = 0.
The need for this condition can be seen directly from the commutation relations
for boson and fermion fields and from the explicit form of transformations (119).

To establish the group structure of transformations (119) it is convenient to
use a 20-component column function8(x) whose first components are formed by
the elements of the lines of the matrixGβ

α(x) (in the order of an alternation of lines
and of the elements in them). The other four components correspond to the wave
function9(x), so

8(x) =
(

Gβ
α(x)

9α(x)

)
(121)

A direct check confirms the following form for writing transformations (119):

8′(x) = (I4⊗ B)8(x) B =
(

DT ζ̄↓
→
ξ λ

)
(122)

where ζ̄↓ is a column,
→
ξ is a row, and (DT)αβ = Dβα. Under the condition

tr(DT) = λ, the transformations in (122) correspond to the graduated Lie alge-
braSL(4 | 1), in the notation of Freund and Kaplansky (1976). The form in (122)
for the transformations (119) is of a standard type (Berezin, 1979), where (DT)
andλ are even elements of a Grassmann algebra, andξ and ζ̄ are odd elements
(i.e., anticommuting elements).

A fundamental distinction between this symmetry and the “ordinary” super-
symmetry, with tensor and spinor generators, is that the corresponding superalgebra
is closed without appealing to the generators of a Poincar´e group.

By analogy with the description of fields with a maximum spin of 1, fields
with a maximum spin ofs/2 can be described by the equations

(γµ∂µ +m)Gα1α2···αs = 0 (123)
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Dirac equation (118) and Eq. (108) constitute a particular case of Eq. (123),
with (Gα1) = 9(x) and (Gα1α2) = G(x). A particle with a maximum spin of 3/2
and a rest mass is described, for example, by the functionGα1α2α3. These internal-
symmetry transformations can be generalized immediately to the case of particles
with maximum spins of 1 and 3/2, which are the particles of the greatest physical
interest.

What possible physical applications could this symmetry have? In an analysis
of systems consisting of two (mesons) and three (baryons) quarks in thesstate, and
in the absence of a spin–spin interaction, the hadrons may be described as multispin
particles with a rest mass. In this case the symmetry under consideration holds rig-
orously, and the hadron interactions can be associated with the internal-symmetry
groupSO(3, 1)⊗ SU(3), whereSO(3, 1) is the internal-symmetry group, which
forms with the Poincar´e group a semidirect product. As has been mentioned in
the literature (Schelest, 1967) the latter property is a necessary feature of strong-
interaction symmetry groups with incorporated quark spin. From this standpoint
the considered supersymmetry corresponds to an internal symmetry of a field
theory which incorporates, along with composite particles, their structural com-
ponents. A further study of this symmetry will be required, of course, to take into
account its possible extension to interacting fields.

7. NON-ABELIAN TENSOR GAUGE THEORY

We will show the possibility of constructing a gauge model of interacting
Dirac–Kähler fields where the gauge group is the noncompact groupSO(4, 2)
under consideration (Kruglov and Strazhev, 1981b).

The starting point in the introduction of Yang–Mills fields is the localiza-
tion of parameters of the symmetry group, the transformations of which do not
affect the space-time coordinates. We consider fields9(x) that possess certain
transformation properties under the Lorentz group and that may be transformed
under a certain representation of the internal symmetry group (usually compact
and semisimple of typeSU(n)). For example, QCD considers the fermionic fields
of spin 1/2, which are transformed under the fundamental representation ofSU(3),
in which the colored quarks are the principal objects. In other words the concept
that there exist some internal quantum numbers (isospin, colour, etc.) is a requi-
site physical element of non-Abelian gauge theory. Describing particles without
involving internal (“isotopic”) spaces e.g., the works of D¨urr et al. (1959), Dürr
(1977), and Budini (1979) has been a long-standing problem; it has, however, been
done using an adequate generalization of the known relativistic wave equations
(RWE) (see Ginzburg and Man’ko, 1976, and other references below). It becomes
imperative today, for an approach of this kind, to imply the concept of a non-Abelian
gauge field—the carrier of interactions. The possibility of constructing the gauge
theory is inherent in the theory of RWE. The theory might be based on the concept
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of a multispin or, equivalently, of a particle having several spin states. The equation
remains coupled—i.e., it describes, as the ordinary Dirac equation does, a particle
(and antiparticle) having a set of states, rather than a set of particles, as is the case
with, for example, the equation corresponding to the direct sum of the Dirac equa-
tions. Transformations of internal symmetry groups result in a mixture of states
related to different values of the spin squared operator. Their localization leads to
non-Abelian gauge fields having multispin 0, 1, 2. In this case the dynamics of
the interaction of particles with multispin 0, 1 are associated with the change of
their state through the exchange of particles with maximum spin 2. The theory
constructed in this manner represents a space-time analogue of gauge theory with
internal symmetry.

An attractive possibility is to describe quarks by the Dirac–K¨ahler equations.
Becher (1981), Rabin (1982), Becher and Joos (1982), Bankset al.(1982), Aratyn
and Zimerman (1986), Joos and Schaefer (1987), Edwardset al. (1988), and
Jourjine (1987) used lattice version of the Dirac–K¨ahler equations describing
fermions by inhomogeneous differential forms. This is equivalent to introduc-
ing a set of antisymmetric tensor fields of arbitrary rank for describing the fermion
matter fields. As shown in the Introduction, we arrive at the Dirac–K¨ahler formu-
lation which includes a scalar, a vector, an antisymmetric tensor, a pseudovector,
and a pseudoscalar field. Here we consider the continuum case of the equations and
introduce non-Abelian tensor gauge fields (gluon fields) for interacting quarks. In
this point of view, quarks possess the multispin 0, 1. As we have already shown,
in the continuum case the equation for the 16-component Dirac equation can be
reduced to four independent 4-component Dirac equations. We proceed to use the
language of tensor fields to formulate non-Abelian tensor gauge theory.

The requirement that the Lagrangian (63) be invariant under local transfor-
mations (69) leads to the necessity of introducing a compensating fieldAB

µ , where
the indexB is “internal” (in our case it represents a set of tensor indices specify-
ing a scalar, a four-vector, a skew second-rank tensor, an axial four-vector, and a
pseudoscalar). The gauge invariant Lagrangian has the known form

L = −9̄(x)
[
0µ
(
∂µ − ieAµ − gAB

µ I B
)+m

]
9(x)− 1

4
F2
µν −

1

4

(
F B
µν

)2
(124)

where

Fµν = ∂µAν − ∂νAµ
(125)

F B
µν = ∂µAB

ν − ∂νAB
µ −

1

2
gcB

C D AC
[µAD

ν]

andcB
C D are the structure constants ofSO(4, 2) group;Fµν andF B

µν are the strengths
of the electromagnetic and “gluon” fields, respectively;g is the “gluon” coupling
constant; andB = {µ, [αβ], µ̃, 0̃}. The localization of theU (1) group produced
the electromagnetic field with four-potentialAµ.
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The corresponding wave equations which follow from the Lagrangian
(124) are

∂νFµν = Jµ (126)

∂νF B
µν + gcB

DC AC
ν F D

µν = JB
µ (127)[

0µ
(
∂µ − ieAµ − gAB

µ I B
)+m

]
9(x) = 0 (128)

where Jµ = ie9̄0µ9, JB
µ = g9̄0µ I B9; I B = 0̄µ, (1/4)0̄[µ0̄ν] , 0̄5, and 0̄50̄µ

(see Eq. (66)). The conservation current for the non-Abelian fields is

Ĵ
B
µ = JB

µ − gcB
DC AC

ν F D
µν (129)

In the general case the gauge field multipletsAC
ν include second-rank tensors

Aαν , Aα̃ν , a third-rank tensor antisymmetric over two indicesA[µν]
ν , and an axial four-

vector A0̃
ν . The structure constantscB

C D transform in the tensor representation of
the Lorentz group. The gauge fields carry the maximal spin 2. Indeed, the second-
rank tensorAαν is transformed on the following superposition of the irreducible
representations of the Lorentz group:(

1

2
,

1

2

)
⊗
(

1

2
,

1

2

)
= (0, 0)⊕ (0, 1)⊕ (1, 0)⊕ (1, 1) (130)

corresponding to the fields with the spins 0, 1, and 2. The third-rank tensorA[µν]
ν

realizes the representations(
1

2
,

1

2

)
⊗ [(0, 1)⊕ (1, 0)]=

(
1

2
,

1

2

)
⊕
(

1

2
,

3

2

)
⊕
(

3

2
,

1

2

)
⊕
(

1

2
,

1

2

)
(131)

which also contain fields with spins 0, 1, and 2; hence we come to the same
conclusion about the spin of the gauge fields.

We can also consider the localization of some subgroups of the total group
SO(4, 2). Then the Lagrangian (124) will be invariant under the local transfor-
mations of this subgroup. The main requirement is to extract the subgroup in a
relativistic manner. We suggest the following subgroups and their corresponding
generators

SO(3, 1)− {I [µν]
}

SO(3, 2)− {I [µν] , Iα
}

(132)
SO(4, 1)− {I [µν] , Ĩα

}
GL(1, R)− { Ĩ }

The possibility of constructing a dynamic theory with all the main properties
of gauge theories, but based upon notions of space-time rather than on new internal
quantum numbers, is of evident interest.
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The absolute group symmetryG corresponds to the semidirect multiplication
of the Poincar´e groupP on the internal symmetry groupD (SO(4, 2) group):

G = P · D (133)

and the transformations of the symmetry group (Group D) commute with the
transformations of the subgroup of four-translationsT4. Following Budini and
Fronsdal (1965), it is possible to define the “auxiliary” Poincar´e groupP′, which
is isomorphic toP, by the relationships

P′ = {L ′µν} · T4 L ′µν = Lµν − Iµν (134)

where Iµν are the generators of the internal symmetry groupSO(3, 1) (see (66)
and (69)). As a result we have

G = P · D = P′ ⊗ D (135)

i.e., the absolute group symmetryG represents the direct product of the aux-
iliary Poincaré group P′ and the internal symmetry groupD, taking into ac-
count that [L ′µν , Iµν ] = [T4, Iµν ] = 0. In our case of the Dirac–K¨ahler equation,
Iµν = (1/4)(0̄µ0̄ν − 0̄ν0̄µ) and

L ′µν =
1

4
(0µ0ν − 0ν0µ) (136)

The generators of the “auxiliary” Lorentz groupL ′µν commute with the gener-
ators of the internal symmetry groupI AB (67) and the wave function transforms in
the spinor representation of the group{L ′µν}. This confirms that the Dirac–K¨ahler
equation describing a set of antisymmetric tensor fields by the inhomogeneous
differential forms, can describe spin 1/2 particles (pseudoscalar and pseudovec-
tor fields are equivalent to the antisymmetric tensor of fourth and third ranks,
respectively). The non-Abelian gauge theory under consideration is an analogy to
the ordinary non-Abelian gauge theory of spin 1/2 particles interacting via gluon
fields with internal symmetry groupSO(6) (orSU(4)). However in our case we have
noncompact gauge groupSO(4, 2) (orSU(2, 2)) which requires the introduction
of an indefinite metric.

8. CONCLUSION

We have considered Dirac–K¨ahler equations which can be represented as the
direct sum of four Dirac equations. The main feature of such scheme is the presence
of the additional symmetry associated with noncompact group in the Minkowski
space. The transformations of this group mix fields with different spins and they do
not commute with the Lorentz transformations. As a result, the group parameters
realize tensor representations of the Lorentz group. This kind of symmetry differs
from the color and flavor symmetries of QCD and supersymmetry. At the same time
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it was shown that the Dirac–K¨ahler fields allow us to introduce graduated groups
with tensor and spinor parameters without including coordinate transformations.

The field scheme considered allow us to construct gauge theories with dif-
ferent noncompact groupsO(3, 1), O(4, 2), andO(3, 3), where “gluon” fields
carry spins 0, 1, and 2. Some of these subgroups become compact groups in the
Euclidean space-time. The theory constructed represents a space-time analogue
of gauge theory with internal symmetry but there is a difficulty arising from the
presence of an indefinite metric. The field schemes considered can be applied to a
construction of quark models or for the classification of hadrons by noncompact
groups (see Kirchbach, 2000), and possibly, for studying subquark matter.

The calculated density matrices (matrix-dyads) for fields and the method of
computing the traces of 16-dimensional Petiau–Duffin–Kemmer matrix products
allow us to make evaluations of different physical quantities in a covariant manner.

APPENDIX A

A method of computing the traces of 16-dimensional Petiau–Duffin–Kemmer
matrix products will be considered (Bogush and Kruglov, 1979).

In order to compare the 16-component model of vector fields (including scalar
states) with the Proca and Petiau–Duffin–Kemmer theories we consider here the
density matrices in the form of matrix-dyads (40) for pure spin states. Taking into
account Eqs. (16) it is possible to have the simpler expressions by using equalities

σ 2

2
p(+) = p(+) σ

2

2
= p(1) σ 2

2
p(−) = p(−) σ

2

2
= p

˜(1)

(A1)(
1− σ

2

2

)
p(+) = p

˜(0)

(
1− σ

2

2

)
p(−) = p(0)

where p(1) = pµβ (1)
µ , p ˜(1) = pµβ

˜(1)
µ , p(0) = pµβ (1)

µ , and p ˜(0) = pµβ
˜(0)
µ . The rela-

tionships (A1) are obtained by using Eqs. (16) and (24) and the expression for the
squared spin operator:

σ 2 =
[

i

2m
εµναβ

1

4
(0µ0ν − 0ν0µ + 0̄µ0̄ν − 0̄µ0̄ν)

]2

(A2)

Taking into account relations (A1), the projection matrix-dyads (40) are trans-
formed into

1(1) = 1

4m2
i p(1)

(
i p(1)− εm)σ (1)

p

(
σ (1)

p + sp
) = 9(1) · 9̄ (1) (A3)

1
˜(1) = 1

4m2
i p

˜(1)
(
i p

˜(1)− εm)σ ˜(1)
p

(
σ

˜(1)
p + sp

) = 9 ˜(1) · 9̄ ˜(1) (A4)

1
(1)
0 =

1

2m2
i p(1)

(
i p(1)− εm)(1− σ (1)2

p

) = 9(1)
0 · 9̄ (1)

0 (A5)
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1
˜(1)

0 =
1

2m2
i p

˜(1)
(
i p

˜(1)− εm)(1− σ ˜(1)2
p

) = 9 ˜(1)
0 · 9̄

˜(1)
0 (A6)

1(0) = 1

2m2
i p(0)

(
i p(0)− εm)(1− σ (0)2

p

)
= 1

2m2
i p(0)

(
i p(0)− εm) = 9(0) · 9̄ (0) (A7)

1
˜(0) = 1

2m2
i p

˜(0)
(
i p

˜(0)− εm)(1− σ ˜(0)2
p

)
= 1

2m2
i p

˜(0)
(
i p

˜(0)− εm) = 9 ˜(0) · 9̄ ˜(0) (A8)

where we also used the equalities

p(0)
(
1− σ (0)2

p

) = p(0) p(1)σp = p(1)σ (1)
p = −

i

|p| p
(1)εabcpaβ

(1)
b β (1)

c

and so on.
The matrix-dyads (A3) and (A5) correspond to the vector state, (A4) and (A6)

to the pseudovector state, (A7) to the scalar state, and (A8) to the pseudoscalar
state. Eventually Eqs. (A3)–(A8) coincide with solutions of 10-component (for
vector and pseudovector states) and 5-component (for scalar and pseudoscalar
states) free Petiau–Duffin–Kemmer equations.

It is known that cross-sections for the scattering processes are summed to
evaluate the transition probabilities for a particle going from the initial to the final
states. These probabilities are proportional to the squared modules of the matrix
elements which can be written as (see e.g., Fedorov, 1959, 1979)

|M |2 = e2tr{Q51Q̄52} (A9)

whereQ is the vertex operator,̄Q = ηQ+η(η = 040̄4 is the Hermitianizing ma-
trix, Q+ is the Hermite conjugated operator), and the matrix-dyads51 and52

correspond to initial and final states, respectively. Therefore we need the traces
of 16-dimensional Petiau–Duffin–Kemmer matrix products to calculate some pro-
cesses with the presence of vector and scalar fields.

It is easy to verify that the property of traces of the 16× 16 Petiau–Duffin–
Kemmer matricesβ(±)

µ (16)

tr
{
βµ1βµ2 · · ·βµn

} = tr
{(

Pβµnβµ1 P
)(

Pβµ2βµ3 P
) · · · (Pβµn−2βµn−1 P

)}
+ tr

{(
Pβµ1βµ2 P

)(
Pβµ3βµ4 P

) · · · (Pβµn−1βµn P
)}

(A10)

is valid, whereP = ε0,0+ ε0̃,0̃+ (1/2)ε[µν],[µν] is the projection operator. The
analogous identity was derived in Bogush and Moroz (1968) for the (5× 5) and
10× 10) Petiau–Duffin–Kemmer matrices. The trace of the odd-numbered matri-
cesβ (±)

µ is equal to zero. Equation (A10) is valid for any Petiau–Duffin–Kemmer
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matrix given by (16). Using the properties of the entire matrix algebraεA,B we
find

Pβ (−)
µ β (+)

ν P = ε0,[µν] + 1

2
eνµρωε

[ρω], 0̃

Pβ(+)
µ β (−)

ν P = ε[µν],0 + 1

2
eµνρωε

0̃,[ρω]

Pβ(+)
µ β (+)

ν P = δµνε0̃,0̃+ ε[ρµ],[ρν]

Pβ(−)
µ β (−)

ν P = δµνε0,0+ 1

4
eλµρωeλνσαε

[ρω][σα] (A11)

Pβ (0)
µ β

(+)
ν P = Pβ(−)

µ β (1)
ν P = ε0,[µν]

Pβ(+)
µ β (0)

ν P = Pβ(1)
µ β

(−)
ν P = ε[νµ],0

Pβ(0)
µ β

(−)
ν P = Pβ(−)

µ β (0)
ν P = δµνε0,0

The relations (A10) and (A11) with the help of the equalities tr{εA,B} =
δA,B, δ[µν][ρσ ] = δµρδνσ − δµσ δνρ , εA,BεC,D = δBCε

A,D, and (εA,B)C D = δACδB D

allow us to find traces of any Petiau–Duffin–Kemmer matrices.

APPENDIX B

We analyze here the Lorentz transformations in the framework of the quater-
nion algebra. The quaternion algebra is defined by four basis elementseµ = (ek, e4)
(see e.g., Casanova, 1976) with the multiplication properties

e2
4 = 1 e2

1 = e2
2 = e2

3 = −1 e1e2 = e3

e2e1 = −e3 e2e3 = e1 e3e2 = −e1 (B1)

e3e1 = e2 e1e3 = −e2 e4em = eme4 = em

wherem= 1, 2, 3 ande4 = 1 is the unit element.
The complex quaternion (or biquaternion)q is

q = qµeµ = qmem + q4e4 (B2)

whereqµ are complex numbers (qµ = Reqµ + i Im qµ, i 2 = −1). Using the laws
of multiplication (B1), we find that the product of two arbitrary quaternionsq and
q′ is defined by

qq′ = (q4q
′
4− qmq′m)e4+ (q′4qm + q4q

′
m + εmnkqnq′k)em (B3)

It is convenient to represent the arbitrary quaternion asq = q4+ q (so
q4e4→ q4, qmem→ q), whereq4 and q are the scalar and vector parts of the
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quaternion, respectively. With the help of this notation, Eq. (B3) can be rewrit-
ten as

qq′ = q4q
′
4− qmq′m + q′4q+ q4q′ + [q, q′] (B4)

Thus the scalar (q, q′) = qmq′m, and vector [q, q′] products are parts of the
quaternion multiplication. It is easy to verify the combined law for three
quaternions:

(q1q2)q3 = q1(q2q3) (B5)

The operation of quaternion conjugation (hyperconjugation) denotes the tran-
sition to

q̄ = q4e4− qmem ≡ q4− q (B6)

so that the equalities

q1+ q2 = q̄1+ q̄2 q1q2 = q̄2q̄1 (B7)

are valid for two arbitrary quaternionsq1 andq2. The modulus of the quaternion
|q| is defined by

|q| = √qq̄ =
√

q2
µ (B8)

This formula allows us to divide one quaternions by another, and thus the
quaternion algebra includes this division. For example, the simple equations and
their solutions are given by

q2x = q1 xL = q̄2q1

|q2|2
(B9)

xq2 = q1 xR = q1q̄2

|q2|2
Quaternions are a generalization of the complex numbers and we can con-

sider quaternions as a doubling of the complex numbers. They are convenient
for investigating the symmetry of fields and relativistic kinematics. In particu-
lar, the finite transformations of the Lorentz eigengroup are given by Casanova
(1976)

x′ = LxL̄∗ (B10)

wherex = x4+ x is the quaternion of the coordinates (x4 = it, t is the time, and
xm are the spatial coordinates),L is the quaternion of the Lorentz group with
the constraintL L̄ = 1, L̄∗ = L∗4 − L ∗, and ∗ means the complex conjugation.
The biquaternionL with the constraintL L̄ = 1 is defined by six independent
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parameters which characterize the Lorentz transformations. The squared four-
vector of coordinates,x2

µ, is invariant under the transformations (B10)

x′2µ = x′ x̄′ = LxL̄∗L∗ x̄ L̄ = xx̄ = x2
µ (B11)

as L̄∗L∗ = L∗ L̄∗ = 1. Equation (B11) shows that the six-parameter transforma-
tions (B10) belong to the Lorentz groupSO(3, 1).

The complex Lorentz groupSO(4, c) (see Bogush and Fedorov, 1977) acts in
complex space-time with the coordinateszµ = (zm, i z0). The transformations of
the complex Lorentz group are defined by

z′ = LzR (B12)

where independent biquaternionsL and R satisfy the requirement thatL L̄ = 1
andRR̄= 1. As a result there are 12 independent parameters defining theSO(4, c)
group in whichz2

µ remains invariant. Indeed,

z′2µ = z′z̄′ = LzRR̄z̄L̄ = zz̄= z2
µ (B13)

In the case of the ordinary Lorentz group we should putR= L̄∗.
It should be noted that quaternion algebra can be realized using the Pauli 2×

2 matricesτk(k = 1, 2, and 3). Settinge4 = I2, ek = i τk, and using the properties
of Pauli’s matrices

τmτn = i εmnkτk + δmn
(B14)

τi τk + τkτi = 2δik

we come to the quaternion algebra (B1).
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